These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 23787642)

  • 1. A dichroic surface-plasmon-polariton splitter based on an asymmetric T-shape nanoslit.
    Zhang X; Li Z; Chen J; Yue S; Gong Q
    Opt Express; 2013 Jun; 21(12):14548-54. PubMed ID: 23787642
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Broadband unidirectional generation of surface plasmon polaritons with dielectric-film-coated asymmetric single-slit.
    Chen J; Li Z; Lei M; Yue S; Xiao J; Gong Q
    Opt Express; 2011 Dec; 19(27):26463-9. PubMed ID: 22274231
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The origin of interferometric effect involving surface plasmon polariton in scattering near-field scanning optical microscopy.
    Li Y; Zhou N; Kinzel EC; Ren X; Xu X
    Opt Express; 2014 Feb; 22(3):2965-72. PubMed ID: 24663588
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface plasmon polariton analogue to Young's double-slit experiment.
    Zia R; Brongersma ML
    Nat Nanotechnol; 2007 Jul; 2(7):426-9. PubMed ID: 18654327
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sub-μm2 power splitters by using silicon hybrid plasmonic waveguides.
    Wang J; Guan X; He Y; Shi Y; Wang Z; He S; Holmström P; Wosinski L; Thylen L; Dai D
    Opt Express; 2011 Jan; 19(2):838-47. PubMed ID: 21263623
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integrated plasmonic semi-circular launcher for dielectric-loaded surface plasmon-polariton waveguide.
    Li X; Huang L; Tan Q; Bai B; Jin G
    Opt Express; 2011 Mar; 19(7):6541-8. PubMed ID: 21451682
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theory of enhanced optical transmission through a metallic nano-slit surrounded with asymmetric grooves under oblique incidence.
    Cai L; Li G; Xiao F; Wang Z; Xu A
    Opt Express; 2010 Sep; 18(19):19495-503. PubMed ID: 20940845
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface plasmon leakage radiation microscopy at the diffraction limit.
    Hohenau A; Krenn JR; Drezet A; Mollet O; Huant S; Genet C; Stein B; Ebbesen TW
    Opt Express; 2011 Dec; 19(25):25749-62. PubMed ID: 22273967
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Programming of inhomogeneous resonant guided wave networks.
    Feigenbaum E; Burgos SP; Atwater HA
    Opt Express; 2010 Dec; 18(25):25584-95. PubMed ID: 21164904
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanofocusing of surface plasmon polaritons by a pyramidal structure on an aperture.
    Tanaka K; Katayama K; Tanaka M
    Opt Express; 2010 Jan; 18(2):787-98. PubMed ID: 20173901
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Collective behavior of impedance matched plasmonic nanocavities.
    Polyakov A; Zolotorev M; Schuck PJ; Padmore HA
    Opt Express; 2012 Mar; 20(7):7685-93. PubMed ID: 22453447
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanofocusing radially-polarized beams for high-throughput funneling of optical energy to the near field.
    Chen XW; Sandoghdar V; Agio M
    Opt Express; 2010 May; 18(10):10878-87. PubMed ID: 20588943
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Objective-first design of high-efficiency, small-footprint couplers between arbitrary nanophotonic waveguide modes.
    Lu J; Vučković J
    Opt Express; 2012 Mar; 20(7):7221-36. PubMed ID: 22453404
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient low dispersion compact plasmonic-photonic coupler.
    Sidiropoulos TP; Maier SA; Oulton RF
    Opt Express; 2012 May; 20(11):12359-65. PubMed ID: 22714223
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structured light for focusing surface plasmon polaritons.
    Hu ZJ; Tan PS; Zhu SW; Yuan XC
    Opt Express; 2010 May; 18(10):10864-70. PubMed ID: 20588941
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SPPs coupling induced interference in metal/dielectric multilayer waveguides and its application for plasmonic lithography.
    Zhu P; Shi H; Guo LJ
    Opt Express; 2012 May; 20(11):12521-9. PubMed ID: 22714240
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Side-coupled cavity model for surface plasmon-polariton transmission across a groove.
    Liu JS; White JS; Fan S; Brongersma ML
    Opt Express; 2009 Sep; 17(20):17837-48. PubMed ID: 19907571
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Focusing plasmons in nanoslits for surface-enhanced Raman scattering.
    Chen C; Hutchison JA; Van Dorpe P; Kox R; De Vlaminck I; Uji-I H; Hofkens J; Lagae L; Maes G; Borghs G
    Small; 2009 Dec; 5(24):2876-82. PubMed ID: 19816878
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient apertureless scanning probes using patterned plasmonic surfaces.
    Lee Y; Alu A; Zhang JX
    Opt Express; 2011 Dec; 19(27):25990-9. PubMed ID: 22274187
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel efficient design of Y-splitter for surface plasmon polariton applications.
    Passinger S; Seidel A; Ohrt C; Reinhardt C; Stepanov A; Kiyan R; Chichkov B
    Opt Express; 2008 Sep; 16(19):14369-79. PubMed ID: 18794972
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.