These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 23787680)

  • 1. Experimental demonstration of metamaterial "multiverse" in a ferrofluid.
    Smolyaninov II; Yost B; Bates E; Smolyaninova VN
    Opt Express; 2013 Jun; 21(12):14918-25. PubMed ID: 23787680
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fine tuning and MOND in a metamaterial "multiverse".
    Smolyaninov II; Smolyaninova VN
    Sci Rep; 2017 Aug; 7(1):8023. PubMed ID: 28808279
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental model of topological defects in Minkowski space-time based on disordered ferrofluid: magnetic monopoles, cosmic strings and the space-time cloak.
    Smolyaninov II; Smolyaninova VN; Smolyaninov AI
    Philos Trans A Math Phys Eng Sci; 2015 Aug; 373(2049):. PubMed ID: 26217055
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Manipulating polarization of light with ultrathin epsilon-near-zero metamaterials.
    Ginzburg P; Rodríguez Fortuño FJ; Wurtz GA; Dickson W; Murphy A; Morgan F; Pollard RJ; Iorsh I; Atrashchenko A; Belov PA; Kivshar YS; Nevet A; Ankonina G; Orenstein M; Zayats AV
    Opt Express; 2013 Jun; 21(12):14907-17. PubMed ID: 23787679
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hyperbolic and plasmonic properties of silicon/Ag aligned nanowire arrays.
    Prokes SM; Glembocki OJ; Livenere JE; Tumkur TU; Kitur JK; Zhu G; Wells B; Podolskiy VA; Noginov MA
    Opt Express; 2013 Jun; 21(12):14962-74. PubMed ID: 23787684
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vacuum in a strong magnetic field as a hyperbolic metamaterial.
    Smolyaninov II
    Phys Rev Lett; 2011 Dec; 107(25):253903. PubMed ID: 22243076
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro study of magnetite-amyloid β complex formation.
    Mir M; Tahirbegi IB; Valle-Delgado JJ; Fernàndez-Busquets X; Samitier J
    Nanomedicine; 2012 Aug; 8(6):974-80. PubMed ID: 22115601
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polarization angle control of coherent coupling in metamaterial superlattice for closed mode excitation.
    Kang B; Choi E; Lee HH; Kim ES; Woo JH; Kim J; Hong TY; Kim JH; Wu JW
    Opt Express; 2010 May; 18(11):11552-61. PubMed ID: 20589016
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantum topological transition in hyperbolic metamaterials based on high Tc superconductors.
    Smolyaninov II
    J Phys Condens Matter; 2014 Jul; 26(30):305701. PubMed ID: 25001512
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical isolation with epsilon-near-zero metamaterials.
    Davoyan AR; Mahmoud AM; Engheta N
    Opt Express; 2013 Feb; 21(3):3279-86. PubMed ID: 23481787
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of magnetically induced linear aggregates on proton transverse relaxation rates of aqueous suspensions of polymer coated magnetic nanoparticles.
    Saville SL; Woodward RC; House MJ; Tokarev A; Hammers J; Qi B; Shaw J; Saunders M; Varsani RR; St Pierre TG; Mefford OT
    Nanoscale; 2013 Mar; 5(5):2152-63. PubMed ID: 23389324
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reduced reflection from roughened hyperbolic metamaterial.
    Narimanov EE; Li H; Barnakov YA; Tumkur TU; Noginov MA
    Opt Express; 2013 Jun; 21(12):14956-61. PubMed ID: 23787683
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metamaterials with custom emissivity polarization in the near-infrared.
    Bossard JA; Werner DH
    Opt Express; 2013 Feb; 21(3):3872-84. PubMed ID: 23481843
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hong-Ou-Mandel interference mediated by the magnetic plasmon waves in a three-dimensional optical metamaterial.
    Wang SM; Mu SY; Zhu C; Gong YX; Xu P; Liu H; Li T; Zhu SN; Zhang X
    Opt Express; 2012 Feb; 20(5):5213-8. PubMed ID: 22418327
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-assembled iron oxide nanoparticle multilayer: x-ray and polarized neutron reflectivity.
    Mishra D; Benitez MJ; Petracic O; Badini Confalonieri GA; Szary P; Brüssing F; Theis-Bröhl K; Devishvili A; Vorobiev A; Konovalov O; Paulus M; Sternemann C; Toperverg BP; Zabel H
    Nanotechnology; 2012 Feb; 23(5):055707. PubMed ID: 22236964
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hyperbolic metamaterial lens with hydrodynamic nonlocal response.
    Yan W; Mortensen NA; Wubs M
    Opt Express; 2013 Jun; 21(12):15026-36. PubMed ID: 23787690
    [TBL] [Abstract][Full Text] [Related]  

  • 17. THz bandwidth optical switching with carbon nanotube metamaterial.
    Nikolaenko AE; Papasimakis N; Chipouline A; De Angelis F; Di Fabrizio E; Zheludev NI
    Opt Express; 2012 Mar; 20(6):6068-79. PubMed ID: 22418486
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assembling of three-dimensional crystals by optical depletion force induced by a single focused laser beam.
    Deng HD; Li GC; Liu HY; Dai QF; Wu LJ; Lan S; Gopal AV; Trofimov VA; Lysak TM
    Opt Express; 2012 Apr; 20(9):9616-23. PubMed ID: 22535053
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transient magnetic birefringence for determining magnetic nanoparticle diameters in dense, highly light scattering media.
    Köber M; Moros M; Grazú V; de la Fuente JM; Luna M; Briones F
    Nanotechnology; 2012 Apr; 23(15):155501. PubMed ID: 22456180
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Zeroth-order transmission resonance in hyperbolic metamaterials.
    Huang Z; Narimanov EE
    Opt Express; 2013 Jun; 21(12):15020-5. PubMed ID: 23787689
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.