These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 2378867)

  • 1. Resonance Raman studies of hemoglobins reconstituted with mesoheme. Unperturbed iron-histidine stretching frequencies in a functionally altered hemoglobin.
    Jeyarajah S; Kincaid JR
    Biochemistry; 1990 May; 29(21):5087-94. PubMed ID: 2378867
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Resonance Raman study of deoxy and ligated (O2 and CO) mesoheme IX-reconstituted myoglobin, hemoglobin and its alpha and beta subunits.
    Podstawka E; Proniewicz LM
    J Inorg Biochem; 2004 Sep; 98(9):1502-12. PubMed ID: 15337602
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Linking conformation change to hemoglobin activation via chain-selective time-resolved resonance Raman spectroscopy of protoheme/mesoheme hybrids.
    Balakrishnan G; Ibrahim M; Mak PJ; Hata J; Kincaid JR; Spiro TG
    J Biol Inorg Chem; 2009 Jun; 14(5):741-50. PubMed ID: 19288145
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transient Raman study of hemoglobin: structural dependence of the iron-histidine linkage.
    Friedman JM; Rousseau DL; Ondrias MR; Stepnoski RA
    Science; 1982 Dec; 218(4578):1244-6. PubMed ID: 7146910
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The iron-proximal histidine linkage and protein control of oxygen binding in hemoglobin. A transient Raman study.
    Friedman JM; Scott TW; Stepnoski RA; Ikeda-Saito M; Yonetani T
    J Biol Chem; 1983 Sep; 258(17):10564-72. PubMed ID: 6885793
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Iron-histidine stretching vibration in the deoxy state of insect hemoglobins with different O2 affinities and Bohr effects.
    Kerr EA; Yu NT; Gersonde K; Parish DW; Smith KM
    J Biol Chem; 1985 Oct; 260(23):12665-9. PubMed ID: 4044602
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low frequency resonance Raman spectra of isolated alpha and beta subunits of hemoglobin and their deuterated analogues.
    Podstawka E; Mak PJ; Kincaid JR; Proniewicz LM
    Biopolymers; 2006 Dec; 83(5):455-66. PubMed ID: 16845667
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electron paramagnetic resonance studies on cobalt hemoglobin, iron-cobalt hybrid hemoglobins, and their related model complexes. Characterization of proximal histidine binding to porphyrin cobalt(II) ion and its transition associated with subunit interaction.
    Inubushi T; Yonetani T
    Biochemistry; 1983 Apr; 22(8):1894-900. PubMed ID: 6303396
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein-heme interactions in hemoglobin from the mollusc Scapharca inaequivalvis: evidence from resonance Raman scattering.
    Song S; Boffi A; Chiancone E; Rousseau DL
    Biochemistry; 1993 Jun; 32(25):6330-6. PubMed ID: 8518278
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Resonance Raman spectra of native and mesoheme-reconstituted horseradish peroxidase and their catalytic intermediates.
    Kincaid JR; Zheng Y; Al-Mustafa J; Czarnecki K
    J Biol Chem; 1996 Nov; 271(46):28805-11. PubMed ID: 8910524
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Four- and five-coordinate species in nickel-reconstituted hemoglobin and myoglobin: Raman identification of the nickel-histidine stretching mode.
    Shelnutt JA; Alston K; Ho JY; Yu NT; Yamamoto T; Rifkind JM
    Biochemistry; 1986 Feb; 25(3):620-7. PubMed ID: 3955018
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ruthenium-iron hybrid hemoglobins as a model for partially liganded hemoglobin: oxygen equilibrium curves and resonance Raman spectra.
    Ishimori K; Tsuneshige A; Imai K; Morishima I
    Biochemistry; 1989 Oct; 28(21):8603-9. PubMed ID: 2605210
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Resonance Raman spectroscopic studies in copper reconstituted and hybrid hemoglobins: probe into subunit heterogeneity.
    Swarnalatha V; Balakrishnan G; Manoharan PT
    Biopolymers; 2002; 67(3):156-66. PubMed ID: 11979594
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Resonance Raman spectroscopy of hemoglobin.
    Asher S
    Methods Enzymol; 1981; 76():371-413. PubMed ID: 7329265
    [No Abstract]   [Full Text] [Related]  

  • 15. Structural heterogeneity of the Fe(2+)-N epsilon (HisF8) bond in various hemoglobin and myoglobin derivatives probed by the Raman-active iron histidine stretching mode.
    Gilch H; Schweitzer-Stenner R; Dreybrodt W
    Biophys J; 1993 Oct; 65(4):1470-85. PubMed ID: 8274641
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Resonance Raman spectroscopy of red blood cells using near-infrared laser excitation.
    Wood BR; Caspers P; Puppels GJ; Pandiancherri S; McNaughton D
    Anal Bioanal Chem; 2007 Mar; 387(5):1691-703. PubMed ID: 17151857
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure, dynamics, and reactivity in hemoglobin.
    Friedman JM
    Science; 1985 Jun; 228(4705):1273-80. PubMed ID: 4001941
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential control of heme reactivity in alpha and beta subunits of hemoglobin: a combined Raman spectroscopic and computational study.
    Jones EM; Monza E; Balakrishnan G; Blouin GC; Mak PJ; Zhu Q; Kincaid JR; Guallar V; Spiro TG
    J Am Chem Soc; 2014 Jul; 136(29):10325-39. PubMed ID: 24991732
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure changes in hemoglobin upon deletion of C-terminal residues, monitored by resonance Raman spectroscopy.
    Wang D; Spiro TG
    Biochemistry; 1998 Jul; 37(28):9940-51. PubMed ID: 9665699
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differences in Fe(II)-N epsilon(His-F8) stretching frequencies between deoxyhemoglobins in the two alternative quaternary structures.
    Nagai K; Kitagawa T
    Proc Natl Acad Sci U S A; 1980 Apr; 77(4):2033-7. PubMed ID: 6929536
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.