These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 23789025)
41. Genome-wide mapping of quantitative trait loci for fatness, fat cell characteristics and fat metabolism in three porcine F2 crosses. Geldermann H; Cepica S; Stratil A; Bartenschlager H; Preuss S Genet Sel Evol; 2010 Jul; 42(1):31. PubMed ID: 20667088 [TBL] [Abstract][Full Text] [Related]
42. Quantitative trait locus mapping identifies candidate alleles involved in adaptive introgression and range expansion in a wild sunflower. Whitney KD; Broman KW; Kane NC; Hovick SM; Randell RA; Rieseberg LH Mol Ecol; 2015 May; 24(9):2194-211. PubMed ID: 25522096 [TBL] [Abstract][Full Text] [Related]
43. Weed evolution after crop gene introgression: greater survival and fecundity of hybrids in a new environment. Campbell LG; Snow AA; Ridley CE Ecol Lett; 2006 Nov; 9(11):1198-209. PubMed ID: 17040322 [TBL] [Abstract][Full Text] [Related]
44. Genetic dissection of yield-related traits and mid-parent heterosis for those traits in maize (Zea mays L.). Yi Q; Liu Y; Hou X; Zhang X; Li H; Zhang J; Liu H; Hu Y; Yu G; Li Y; Wang Y; Huang Y BMC Plant Biol; 2019 Sep; 19(1):392. PubMed ID: 31500559 [TBL] [Abstract][Full Text] [Related]
45. Quantitative trait locus mapping of yield-related components and oligogenic control of the cap color of the button mushroom, Agaricus bisporus. Foulongne-Oriol M; Rodier A; Rousseau T; Savoie JM Appl Environ Microbiol; 2012 Apr; 78(7):2422-34. PubMed ID: 22267676 [TBL] [Abstract][Full Text] [Related]
46. Lifetime fitness in two generations of Ipomopsis hybrids. Campbell DR; Waser NM; Aldridge G; Wu CA Evolution; 2008 Oct; 62(10):2616-27. PubMed ID: 18637834 [TBL] [Abstract][Full Text] [Related]
47. Identification of Indica rice chromosome segments for the improvement of Japonica inbreds and hybrids. Wang Z; Yu C; Liu X; Liu S; Yin C; Liu L; Lei J; Jiang L; Yang C; Chen L; Zhai H; Wan J Theor Appl Genet; 2012 May; 124(7):1351-64. PubMed ID: 22311371 [TBL] [Abstract][Full Text] [Related]
48. The effect of hybrid transgression on environmental tolerance in experimental yeast crosses. Stelkens RB; Brockhurst MA; Hurst GD; Miller EL; Greig D J Evol Biol; 2014 Nov; 27(11):2507-19. PubMed ID: 25262771 [TBL] [Abstract][Full Text] [Related]
49. Comparative mapping of quantitative trait loci involved in heterosis for seedling and yield traits in oilseed rape (Brassica napus L.). Basunanda P; Radoev M; Ecke W; Friedt W; Becker HC; Snowdon RJ Theor Appl Genet; 2010 Jan; 120(2):271-81. PubMed ID: 19707740 [TBL] [Abstract][Full Text] [Related]
50. QTL affecting fitness of hybrids between wild and cultivated soybeans in experimental fields. Kuroda Y; Kaga A; Tomooka N; Yano H; Takada Y; Kato S; Vaughan D Ecol Evol; 2013 Jul; 3(7):2150-68. PubMed ID: 23919159 [TBL] [Abstract][Full Text] [Related]
51. Comparative Mapping of Seed Dormancy Loci Between Tropical and Temperate Ecotypes of Weedy Rice ( Zhang L; Lou J; Foley ME; Gu XY G3 (Bethesda); 2017 Aug; 7(8):2605-2614. PubMed ID: 28592557 [TBL] [Abstract][Full Text] [Related]
52. Yield-enhancing quantitative trait loci (QTLs) from wild species. Swamy BP; Sarla N Biotechnol Adv; 2008; 26(1):106-20. PubMed ID: 17949936 [TBL] [Abstract][Full Text] [Related]
53. Integration of conventional and advanced molecular tools to track footprints of heterosis in cotton. Sarfraz Z; Iqbal MS; Pan Z; Jia Y; He S; Wang Q; Qin H; Liu J; Liu H; Yang J; Ma Z; Xu D; Yang J; Zhang J; Gong W; Geng X; Li Z; Cai Z; Zhang X; Zhang X; Huang A; Yi X; Zhou G; Li L; Zhu H; Qu Y; Pang B; Wang L; Iqbal MS; Jamshed M; Sun J; Du X BMC Genomics; 2018 Oct; 19(1):776. PubMed ID: 30373509 [TBL] [Abstract][Full Text] [Related]
54. Plant fitness assessment for wild relatives of insect resistant crops. Letourneau DK; Hagen JA Environ Biosafety Res; 2009; 8(1):45-55. PubMed ID: 19419653 [TBL] [Abstract][Full Text] [Related]
55. Increased Longevity and Dormancy of Soil-Buried Seeds from Advanced Crop-Wild Rice Hybrids Overexpressing the Jiang XQ; Yang X; Lu BR Biology (Basel); 2021 Jun; 10(6):. PubMed ID: 34203092 [TBL] [Abstract][Full Text] [Related]
56. Identification of quantitative genetic components of fitness variation in farmed, hybrid and native salmon in the wild. Besnier F; Glover KA; Lien S; Kent M; Hansen MM; Shen X; Skaala Ø Heredity (Edinb); 2015 Jul; 115(1):47-55. PubMed ID: 26059968 [TBL] [Abstract][Full Text] [Related]
57. Identification of quantitative trait loci across recombinant inbred lines and testcross populations for traits of agronomic importance in rice. You A; Lu X; Jin H; Ren X; Liu K; Yang G; Yang H; Zhu L; He G Genetics; 2006 Feb; 172(2):1287-300. PubMed ID: 16322522 [TBL] [Abstract][Full Text] [Related]
58. The genetic architecture of reproductive isolation in Louisiana irises: hybrid fitness in nature. Taylor SJ; Arnold M; Martin NH Evolution; 2009 Oct; 63(10):2581-94. PubMed ID: 19549289 [TBL] [Abstract][Full Text] [Related]
59. Increased pre-dispersal seed predation in sunflower crop-wild hybrids. Cummings CL; Alexander HM; Snow AA Oecologia; 1999 Nov; 121(3):330-338. PubMed ID: 28308321 [TBL] [Abstract][Full Text] [Related]
60. Simultaneous selection of major and minor genes: use of QTL to increase selection efficiency of coleoptile length of wheat (Triticum aestivum L.). Wang J; Chapman SC; Bonnett DG; Rebetzke GJ Theor Appl Genet; 2009 Jun; 119(1):65-74. PubMed ID: 19360392 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]