These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. How do herbivorous insects respond to drought stress in trees? Gely C; Laurance SGW; Stork NE Biol Rev Camb Philos Soc; 2020 Apr; 95(2):434-448. PubMed ID: 31750622 [TBL] [Abstract][Full Text] [Related]
3. Plant-mediated and nonadditive effects of two global change drivers on an insect herbivore community. de Sassi C; Lewis OT; Tylianakis JM Ecology; 2012 Aug; 93(8):1892-901. PubMed ID: 22928417 [TBL] [Abstract][Full Text] [Related]
4. Accumulation of soil carbon under elevated CO Dietzen CA; Larsen KS; Ambus PL; Michelsen A; Arndal MF; Beier C; Reinsch S; Schmidt IK Glob Chang Biol; 2019 Sep; 25(9):2970-2977. PubMed ID: 31095816 [TBL] [Abstract][Full Text] [Related]
5. Experimental climate warming alters aspen and birch phytochemistry and performance traits for an outbreak insect herbivore. Jamieson MA; Schwartzberg EG; Raffa KF; Reich PB; Lindroth RL Glob Chang Biol; 2015 Jul; 21(7):2698-2710. PubMed ID: 25538021 [TBL] [Abstract][Full Text] [Related]
6. Long-term effects of elevated CO2, nighttime warming and drought on plant secondary metabolites in a temperate heath ecosystem. Li T; Tiiva P; Rinnan Å; Julkunen-Tiitto R; Michelsen A; Rinnan R Ann Bot; 2020 Jun; 125(7):1065-1075. PubMed ID: 32157285 [TBL] [Abstract][Full Text] [Related]
7. Responses of leaf beetle larvae to elevated [CO₂] and temperature depend on Eucalyptus species. Gherlenda AN; Haigh AM; Moore BD; Johnson SN; Riegler M Oecologia; 2015 Feb; 177(2):607-17. PubMed ID: 25526844 [TBL] [Abstract][Full Text] [Related]
8. Climate change alters plant-herbivore interactions. Hamann E; Blevins C; Franks SJ; Jameel MI; Anderson JT New Phytol; 2021 Feb; 229(4):1894-1910. PubMed ID: 33111316 [TBL] [Abstract][Full Text] [Related]
9. Reduced host plant growth and increased tyrosine-derived secondary metabolites under climate change and negative consequences on its specialist herbivore. Park HJ; Nam BE; Moon SY; Kim SG; Joo Y; Kim JG Sci Total Environ; 2021 Mar; 759():143507. PubMed ID: 33223185 [TBL] [Abstract][Full Text] [Related]
10. Ontogeny-dependent effects of elevated CO Park HJ; Nam BE; Lee G; Kim SG; Joo Y; Kim JG Sci Total Environ; 2022 Sep; 838(Pt 2):156065. PubMed ID: 35597357 [TBL] [Abstract][Full Text] [Related]
11. Interactive effects of drought, elevated CO2 and warming on photosynthetic capacity and photosystem performance in temperate heath plants. Albert KR; Mikkelsen TN; Michelsen A; Ro-Poulsen H; van der Linden L J Plant Physiol; 2011 Sep; 168(13):1550-61. PubMed ID: 21511363 [TBL] [Abstract][Full Text] [Related]
12. Climate Change Modulates Multitrophic Interactions Between Maize, A Root Herbivore, and Its Enemies. Guyer A; van Doan C; Maurer C; Machado RAR; Mateo P; Steinauer K; Kesner L; Hoch G; Kahmen A; Erb M; Robert CAM J Chem Ecol; 2021 Nov; 47(10-11):889-906. PubMed ID: 34415498 [TBL] [Abstract][Full Text] [Related]
13. Interactive effects of pre-industrial, current and future [CO2] and temperature on an insect herbivore of Eucalyptus. Murray TJ; Tissue DT; Ellsworth DS; Riegler M Oecologia; 2013 Apr; 171(4):1025-35. PubMed ID: 23053228 [TBL] [Abstract][Full Text] [Related]
14. Interactive direct and plant-mediated effects of elevated atmospheric [CO2 ] and temperature on a eucalypt-feeding insect herbivore. Murray TJ; Ellsworth DS; Tissue DT; Riegler M Glob Chang Biol; 2013 May; 19(5):1407-16. PubMed ID: 23504696 [TBL] [Abstract][Full Text] [Related]
15. Climate change, nutrition and immunity: Effects of elevated CO2 and temperature on the immune function of an insect herbivore. Gherlenda AN; Haigh AM; Moore BD; Johnson SN; Riegler M J Insect Physiol; 2016 Feb; 85():57-64. PubMed ID: 26678330 [TBL] [Abstract][Full Text] [Related]
16. Disruption of trophic interactions involving the heather beetle by atmospheric nitrogen deposition. Taboada A; Marcos E; Calvo L Environ Pollut; 2016 Nov; 218():436-445. PubMed ID: 27470539 [TBL] [Abstract][Full Text] [Related]
17. Climate warming interacts with other global change drivers to influence plant phenology: A meta-analysis of experimental studies. Zhou H; Min X; Chen J; Lu C; Huang Y; Zhang Z; Liu H Ecol Lett; 2023 Aug; 26(8):1370-1381. PubMed ID: 37278184 [TBL] [Abstract][Full Text] [Related]
18. Responses of community-level plant-insect interactions to climate warming in a meadow steppe. Zhu H; Zou X; Wang D; Wan S; Wang L; Guo J Sci Rep; 2015 Dec; 5():18654. PubMed ID: 26686758 [TBL] [Abstract][Full Text] [Related]
19. Physiological and biochemical responses of a coralline alga and a sea urchin to climate change: Implications for herbivory. Rich WA; Schubert N; Schläpfer N; Carvalho VF; Horta ACL; Horta PA Mar Environ Res; 2018 Nov; 142():100-107. PubMed ID: 30293660 [TBL] [Abstract][Full Text] [Related]
20. Response of wheat restricted-tillering and vigorous growth traits to variables of climate change. Dias de Oliveira EA; Siddique KH; Bramley H; Stefanova K; Palta JA Glob Chang Biol; 2015 Feb; 21(2):857-73. PubMed ID: 25330325 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]