BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 237891)

  • 1. Effect of N-bromosuccinimide modification on dihydrofolate reductase from a methotrexate-resistant strain of Escherichia coli. Activity, spectrophotometric, fluorescence and circular dichroism studies.
    Williams MN
    J Biol Chem; 1975 Jan; 250(1):322-30. PubMed ID: 237891
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of histidine modification on the activity of dihydrofolate reductase from a methotrexate-resistant strain of Escherichia coli B.
    Greenfield NJ
    Biochemistry; 1974 Oct; 13(22):4494-500. PubMed ID: 4154102
    [No Abstract]   [Full Text] [Related]  

  • 3. Interaction of 1,N6-ethenoadenine derivatives of triphosphopyridine and reduced triphosphopyridine nucleotides with dihydrofolate reductase from amethopterin-resistant L1210 cells.
    Neef VG; Huennekens FM
    Biochemistry; 1976 Sep; 15(18):4042-7. PubMed ID: 9129
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Circular dichroism studies of dihydrofolate reductase from a methotrexate-resistant strain of Escherichia coli B, MB 1428: ternary complexes.
    Greenfield NJ
    Biochim Biophys Acta; 1975 Sep; 403(1):32-46. PubMed ID: 240430
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Methotrexate binding to dihydrofolate reductase from a methotrexate-resistant strain of Escherichia coli.
    Williams MN; Poe M; Greenfield NJ; Hirshfield JM; Hoogsteen K
    J Biol Chem; 1973 Sep; 248(18):6375-9. PubMed ID: 4147159
    [No Abstract]   [Full Text] [Related]  

  • 6. The structure of dihydrofolate reductase. I. Inactivation of bacterial dihydrofolate reductase concomitant with modification of a methionine residue at the active site.
    Gleisner JM; Blakley RL
    J Biol Chem; 1975 Feb; 250(4):1580-7. PubMed ID: 1112818
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence for two reduced triphosphopyridine nucleotide binding sites on dihydrofolate reductase from a methotrexate-resistant strain of Escherichia coli.
    Williams MN; Greenfield NJ; Hoogsteen K
    J Biol Chem; 1973 Sep; 248(18):6380-6. PubMed ID: 4147160
    [No Abstract]   [Full Text] [Related]  

  • 8. Role of tryptophan in the spectral and catalytic properties of the copper enzyme, galactose oxidase.
    Kosman DJ; Ettinger MJ; Bereman RD; Giordano RS
    Biochemistry; 1977 Apr; 16(8):1597-601. PubMed ID: 192267
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Circular dichroism studies of dihydrofolate reductase from a methotrexate-resistant strain of Escherichia coli.
    Greenfield NJ; Williams MN; Poe M; Hoogsteen K
    Biochemistry; 1972 Dec; 11(25):4706-11. PubMed ID: 4144060
    [No Abstract]   [Full Text] [Related]  

  • 10. Effect of cysteine modification on dihydrofolate reductase from a methotrexate-resistant strain of Escherichia coli B. Identification of modified residues.
    Williams MN; Bennett CD
    J Biol Chem; 1977 Oct; 252(19):6871-7. PubMed ID: 330537
    [No Abstract]   [Full Text] [Related]  

  • 11. Dihydrofolate reductase from a methotrexate-resistant Escherichia coli.
    Poe M; Greenfield NJ; Williams MN
    J Biol Chem; 1974 May; 249(9):2710-6. PubMed ID: 4151306
    [No Abstract]   [Full Text] [Related]  

  • 12. Chemical modification of the tryptophan residues of wheat-germ agglutinin. Effect on fluorescence and saccharide-binding properties.
    Privat JP; Lotan R; Bouchard P; Sharon N; Monsigny M
    Eur J Biochem; 1976 Sep; 68(2):563-72. PubMed ID: 976273
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Implication of a tryptophyl residue in the active site of dihydrofolate reductase.
    Liu JK; Dunlap RB
    Biochemistry; 1974 Apr; 13(9):1807-14. PubMed ID: 4151741
    [No Abstract]   [Full Text] [Related]  

  • 14. The environments of Trp-248 and Trp-330 in tryptophan indole-lyase from Escherichia coli.
    Phillips RS; Gollnick P
    FEBS Lett; 1990 Jul; 268(1):213-6. PubMed ID: 2200710
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemical modification of tryptophan residues in Escherichia coli succinyl-CoA synthetase. Effect on structure and enzyme activity.
    Ybarra J; Prasad AR; Nishimura JS
    Biochemistry; 1986 Nov; 25(22):7174-8. PubMed ID: 3542020
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Catalytic and regulatory functions of N-bromosuccinimide-modified bovine thrombin.
    Pal PK; Starr T; Gertler MM
    Thromb Res; 1984 Nov; 36(4):293-303. PubMed ID: 6523442
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stopped-flow studies on the chemical modification with N-bromosuccinimide of model compounds of tryptophan residues.
    Ohnishi M; Kawagishi T; Abe T; Hiromi K
    J Biochem; 1980 Jan; 87(1):273-9. PubMed ID: 7358635
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of temperature on fluorescence and circular dichroism of Escherichia coli dihydrofolate reductase and its complexes.
    Kitchell BB; Henkens RW
    Biochim Biophys Acta; 1978 May; 534(1):89-98. PubMed ID: 26417
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proton magnetic resonance studies on Escherichia coli dihydrofolate reductase. Assignment of histidine C-2 protons in binary complexes with folates on the basis of the crystal structure with methotrexate and on chemical modifications.
    Poe M; Hoogsteen K; Matthews DA
    J Biol Chem; 1979 Sep; 254(17):8143-52. PubMed ID: 38247
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Refolding of [6-19F]tryptophan-labeled Escherichia coli dihydrofolate reductase in the presence of ligand: a stopped-flow NMR spectroscopy study.
    Hoeltzli SD; Frieden C
    Biochemistry; 1998 Jan; 37(1):387-98. PubMed ID: 9425060
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.