These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 23789385)

  • 1. [Comparative efficacy of different regimens of locomotor training in long-term space flights by the data of biomechanical and electromyographic parametrs of walking].
    Shpakov AV; Voronov AV; Fomina EV; Lysova NIu; Chernova MV; Kozlovskaia IB
    Fiziol Cheloveka; 2013; 39(2):60-9. PubMed ID: 23789385
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recovery of the locomotor function after prolonged microgravity exposure. I. Head-trunk movement and locomotor equilibrium during various tasks.
    Courtine G; Pozzo T
    Exp Brain Res; 2004 Sep; 158(1):86-99. PubMed ID: 15164151
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Comparative Analisys of Efficacy of Countermeasure Provided by Different Modes of Locomotor Training in Space Flight.].
    Fomina EV; Lysova NY; Chernova MV; Khustnudinova DR; Kozlovskaya IB
    Fiziol Cheloveka; 2016 Sep; 42(5):84-91. PubMed ID: 29932552
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adaptation of neuromuscular activation patterns during treadmill walking after long-duration space flight.
    Layne CS; Lange GW; Pruett CJ; McDonald PV; Merkle LA; Mulavara AP; Smith SL; Kozlovskaya IB; Bloomberg JJ
    Acta Astronaut; 1998; 43(3-6):107-19. PubMed ID: 11541918
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Locomotor function after long-duration space flight: effects and motor learning during recovery.
    Mulavara AP; Feiveson AH; Fiedler J; Cohen H; Peters BT; Miller C; Brady R; Bloomberg JJ
    Exp Brain Res; 2010 May; 202(3):649-59. PubMed ID: 20135100
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Russian Countermeasure Systems for Adverse Effects of Microgravity on Long-Duration ISS Flights.
    Kozlovskaya IB; Yarmanova EN; Yegorov AD; Stepantsov VI; Fomina EV; Tomilovaskaya ES
    Aerosp Med Hum Perform; 2015 Dec; 86(12 Suppl):A24-A31. PubMed ID: 26630192
    [TBL] [Abstract][Full Text] [Related]  

  • 7. One-Year Mission on ISS Is a Step Towards Interplanetary Missions.
    Fomina EV; Lysova NY; Kukoba TB; Grishin AP; Kornienko MB
    Aerosp Med Hum Perform; 2017 Dec; 88(12):1094-1099. PubMed ID: 29157338
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes in hemodynamic and post-flights orthostatic tolerance of cosmonauts under application of the preventive device--thigh cuffs bracelets in short-term flights.
    Fomina G; Kotovskaya A; Arbeille F; Pochuev V; Zhernavkov A; Ivanovskaya T
    J Gravit Physiol; 2004 Jul; 11(2):P229-30. PubMed ID: 16240523
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Musculoskeletal adaptation to mechanical forces on Earth and in space.
    Whalen R
    Physiologist; 1993; 36(1 Suppl):S127-30. PubMed ID: 11537418
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Visual–manual tracking after long spaceflight].
    Fiziol Cheloveka; 2016; 42(3):82-93. PubMed ID: 29446899
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Soviet space flight: the human element.
    Garshnek V
    ASGSB Bull; 1988 May; 1():67-80. PubMed ID: 11589234
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sensory organization of postural control after long term space flight.
    Shishkin N; Kitov V; Sayenko D; Tomilovskaya E
    Front Neural Circuits; 2023; 17():1135434. PubMed ID: 37139078
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Working ability ergometric testing of Russian cosmonauts during long-term flights.
    Sonkin V; Kozlovskaya I; Bourchick M; Zaitseva V
    J Gravit Physiol; 1997 Jul; 4(2):P119-20. PubMed ID: 11540670
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamics of physical performance during long-duration space flight (first results of "Countermeasure" experiment).
    Popov DV; Khusnutdinova DR; Shenkman BS; Vinogradova OL; Kozlovskaya IB
    J Gravit Physiol; 2004 Jul; 11(2):P231-2. PubMed ID: 16240524
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ground reaction forces during treadmill running in microgravity.
    De Witt JK; Ploutz-Snyder LL
    J Biomech; 2014 Jul; 47(10):2339-47. PubMed ID: 24835563
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vestibular-somatosensory convergence in head movement control during locomotion after long-duration space flight.
    Mulavara AP; Ruttley T; Cohen HS; Peters BT; Miller C; Brady R; Merkle L; Bloomberg JJ
    J Vestib Res; 2012 Jan; 22(2):153-66. PubMed ID: 23000615
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Foot forces during exercise on the International Space Station.
    Genc KO; Gopalakrishnan R; Kuklis MM; Maender CC; Rice AJ; Bowersox KD; Cavanagh PR
    J Biomech; 2010 Nov; 43(15):3020-7. PubMed ID: 20728086
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Countermeasure of the negative effects of weightlessness on physical systems in long-term space flights.
    Kozlovskaya IB; Grigoriev AI; Stepantzov VI
    Acta Astronaut; 1995; 36(8-12):661-8. PubMed ID: 11541002
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [VESTIBULAR FUNCTION AFTER REPEATED SPACE FLIGHTS].
    Naumov IA; Kornilova LN; Glukhikh DO; Pavlova AS; Khabarova EV; Ekimovsky GA; Vasin AV
    Aviakosm Ekolog Med; 2015; 49(6):33-40. PubMed ID: 26934788
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neuromuscular activation patterns during treadmill walking after space flight.
    Layne CS; McDonald PV; Bloomberg JJ
    Exp Brain Res; 1997 Jan; 113(1):104-16. PubMed ID: 9028779
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.