These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Photoinactivation of photophosphorylation and dark ATPase in Rhodospirillum rubrum chromatophores. Slooten L; Sybesma C Biochim Biophys Acta; 1976 Dec; 449(3):565-80. PubMed ID: 11818 [TBL] [Abstract][Full Text] [Related]
5. Studies on the light-dependent synthesis of inorganic pyrophosphate by Rhodospirillum rubrum chromatophores. Guillory RJ; Fisher RR Biochem J; 1972 Sep; 129(2):571-81. PubMed ID: 4345276 [TBL] [Abstract][Full Text] [Related]
6. Light-induced pH changes and changes in absorbance of pH indicators in Rhodospirillum rubrum chromatophores. Nishi N; Sakata-Sogawa K; Soe G; Yamashita J J Biochem; 1977 Nov; 82(5):1267-79. PubMed ID: 22540 [TBL] [Abstract][Full Text] [Related]
7. Coupling of ATP hydrolysis to phosphate uptake in Rhodospirillum rubrum chromatophores under the influence of Ca2+ and Mg2+. Montero-LomelĂ M; Martins OB; Dreyfus G J Biol Chem; 1989 Dec; 264(35):21014-7. PubMed ID: 2512287 [TBL] [Abstract][Full Text] [Related]
8. Synthesis of free ATP from membrane-bound ATP in chromatophores of Rhodospirillum rubrum. Lutz HU; Dahl JS; Bachofen R Biochim Biophys Acta; 1974 Jun; 347(3):359-70. PubMed ID: 4210308 [No Abstract] [Full Text] [Related]
10. The permeability of Rhodospirillum rubrum chromatophores to thiocyanate and perchlorate as detected by light-induced fluorochrome fluorescence changes and by photophosphorylation. Gromet-Elhanan Z Biochim Biophys Acta; 1972 Jul; 275(1):125-9. PubMed ID: 4340267 [No Abstract] [Full Text] [Related]
11. The influence of energy-transfer inhibitors on proton permeability and photophosphorylation in normal and preilluminated Rhodospirillum rubrum chromatophores. Slooten L; Branders C Biochim Biophys Acta; 1979 Jul; 547(1):79-90. PubMed ID: 37903 [TBL] [Abstract][Full Text] [Related]
12. [Photophosphorylation and binding of phosphates to chromatophores in Rhodospirillum rubrum]. Lutz HU; Bachofen R Zentralbl Bakteriol Orig A; 1972 May; 220(1):387-93. PubMed ID: 4145605 [No Abstract] [Full Text] [Related]
13. Changes in the fluorescence of atebrin and of anilino-naphthalene sulfonate reflecting two different light-induced processes in Rhodospirillum rubrum chromatophores. Gromet-Elhanan Z Eur J Biochem; 1972 Jan; 25(1):84-8. PubMed ID: 4623434 [No Abstract] [Full Text] [Related]
14. Competition between Pi and pH indicators in photosynthetic ATP formation in chromatophores of Rhodospirillum rubrum. Hosoi K; Yoshimura S; Soe G; Kakuno T; Horio T J Biochem; 1973 Dec; 74(6):1275-8. PubMed ID: 4205462 [No Abstract] [Full Text] [Related]
15. Effects of pH indicators on various activities of chromatophroes of Rhodospirillum rubrum. Hosoi K; Soe G; Kakuno T; Horio T J Biochem; 1975 Dec; 78(6):1331-46. PubMed ID: 5425 [TBL] [Abstract][Full Text] [Related]
16. Absorption changes of carotenoids and bacteriochlorophyll in energized chromatophores of Rhodospirillum rubrum. Barsky EL; Samuilov VD Biochim Biophys Acta; 1973 Dec; 325(3):454-62. PubMed ID: 4360256 [No Abstract] [Full Text] [Related]
17. Comparison of the electrochemical proton gradient and phosphate potential maintained by Rhodospirillum rubrum chromatophores in the steady state. Leiser M; Gromet-Elhanan Z Arch Biochem Biophys; 1977 Jan; 178(1):79-88. PubMed ID: 402116 [No Abstract] [Full Text] [Related]
18. Photosynthetic regeneration of ATP using bacterial chromatophores. Pace GW; Yang HS; Tannenbaum SR; Archer MC Biotechnol Bioeng; 1976 Oct; 18(10):1413-23. PubMed ID: 822897 [TBL] [Abstract][Full Text] [Related]
19. Involvement of an essential arginyl residue in the coupling activity of Rhodospirillum rubrum chromatophores. Vallejos RH; Lescano WI; Lucero HA Arch Biochem Biophys; 1978 Oct; 190(2):578-84. PubMed ID: 102254 [No Abstract] [Full Text] [Related]