BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 23789837)

  • 1. Polyvinyl alcohol-cellulose nanofibrils-graphene oxide hybrid organic aerogels.
    Javadi A; Zheng Q; Payen F; Javadi A; Altin Y; Cai Z; Sabo R; Gong S
    ACS Appl Mater Interfaces; 2013 Jul; 5(13):5969-75. PubMed ID: 23789837
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Poly(vinyl alcohol)/cellulose nanofibril hybrid aerogels with an aligned microtubular porous structure and their composites with polydimethylsiloxane.
    Zhai T; Zheng Q; Cai Z; Turng LS; Xia H; Gong S
    ACS Appl Mater Interfaces; 2015 Apr; 7(13):7436-44. PubMed ID: 25822398
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanically Strong, Low Thermal Conductivity and Improved Thermal Stability Polyvinyl Alcohol-Graphene-Nanocellulose Aerogel.
    Wang X; Xie P; Wan K; Miao Y; Liu Z; Li X; Wang C
    Gels; 2021 Oct; 7(4):. PubMed ID: 34698206
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-Strength Nanocomposite Aerogels of Ternary Composition: Poly(vinyl alcohol), Clay, and Cellulose Nanofibrils.
    Liu A; Medina L; Berglund LA
    ACS Appl Mater Interfaces; 2017 Feb; 9(7):6453-6461. PubMed ID: 28155270
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Green Approach to Improving the Strength and Flame Retardancy of Poly(vinyl alcohol)/Clay Aerogels: Incorporating Biobased Gelatin.
    Wang YT; Zhao HB; Degracia K; Han LX; Sun H; Sun M; Wang YZ; Schiraldi DA
    ACS Appl Mater Interfaces; 2017 Dec; 9(48):42258-42265. PubMed ID: 29140679
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultralight super-hydrophobic carbon aerogels based on cellulose nanofibers/poly(vinyl alcohol)/graphene oxide (CNFs/PVA/GO) for highly effective oil-water separation.
    Xu Z; Zhou H; Tan S; Jiang X; Wu W; Shi J; Chen P
    Beilstein J Nanotechnol; 2018; 9():508-519. PubMed ID: 29527428
    [TBL] [Abstract][Full Text] [Related]  

  • 7.
    Qiang X; Guo X; Su H; Zhao H; Ouyang C; Huang D
    RSC Adv; 2021 Oct; 11(56):35197-35204. PubMed ID: 35493185
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anisotropic Cellulose Nanofibers/Polyvinyl Alcohol/Graphene Aerogels Fabricated by Directional Freeze-drying as Effective Oil Adsorbents.
    Zhou L; Zhai S; Chen Y; Xu Z
    Polymers (Basel); 2019 Apr; 11(4):. PubMed ID: 31003569
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication and Properties of Hybrid Coffee-Cellulose Aerogels from Spent Coffee Grounds.
    Zhang X; Kwek LP; Le DK; Tan MS; Duong HM
    Polymers (Basel); 2019 Nov; 11(12):. PubMed ID: 31779069
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel 3D Network Architectured Hybrid Aerogel Comprising Epoxy, Graphene, and Hydroxylated Boron Nitride Nanosheets.
    Yang W; Wang NN; Ping P; Yuen AC; Li A; Zhu SE; Wang LL; Wu J; Chen TB; Si JY; Rao BD; Lu HD; Chan QN; Yeoh GH
    ACS Appl Mater Interfaces; 2018 Nov; 10(46):40032-40043. PubMed ID: 30379530
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonflammable Alginate Nanocomposite Aerogels Prepared by a Simple Freeze-Drying and Post-Cross-Linking Method.
    Shang K; Liao W; Wang J; Wang YT; Wang YZ; Schiraldi DA
    ACS Appl Mater Interfaces; 2016 Jan; 8(1):643-50. PubMed ID: 26675804
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Facilitated fabrication of high strength silica aerogels using cellulose nanofibrils as scaffold.
    Fu J; Wang S; He C; Lu Z; Huang J; Chen Z
    Carbohydr Polym; 2016 Aug; 147():89-96. PubMed ID: 27178912
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-strength and morphology-controlled aerogel based on carboxymethyl cellulose and graphene oxide.
    Ge X; Shan Y; Wu L; Mu X; Peng H; Jiang Y
    Carbohydr Polym; 2018 Oct; 197():277-283. PubMed ID: 30007614
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A facile strategy for constructing lightweight, fire safety and compression resistance poly(vinylalcohol) aerogels with highly-efficient expansible graphene oxide/layered double hydroxides hybrid synergistic flame retardant.
    Hong X; Zheng Y; Shi Y; Zheng W; Lin F; Xiong L
    J Colloid Interface Sci; 2023 Nov; 650(Pt A):686-700. PubMed ID: 37441962
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extraction of cellulose nanofibrils from dry softwood pulp using high shear homogenization.
    Zhao J; Zhang W; Zhang X; Zhang X; Lu C; Deng Y
    Carbohydr Polym; 2013 Sep; 97(2):695-702. PubMed ID: 23911503
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly absorbent cellulose nanofibrils aerogels prepared by supercritical drying.
    Darpentigny C; Nonglaton G; Bras J; Jean B
    Carbohydr Polym; 2020 Feb; 229():115560. PubMed ID: 31826439
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Graphene oxide/cellulose aerogels nanocomposite: Preparation, pyrolysis, and application for electromagnetic interference shielding.
    Wan C; Li J
    Carbohydr Polym; 2016 Oct; 150():172-9. PubMed ID: 27312627
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultralow Density, Monolithic WS2, MoS2, and MoS2/Graphene Aerogels.
    Worsley MA; Shin SJ; Merrill MD; Lenhardt J; Nelson AJ; Woo LY; Gash AE; Baumann TF; Orme CA
    ACS Nano; 2015 May; 9(5):4698-705. PubMed ID: 25858296
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spray freeze-dried nanofibrillated cellulose aerogels with thermal superinsulating properties.
    Jiménez-Saelices C; Seantier B; Cathala B; Grohens Y
    Carbohydr Polym; 2017 Feb; 157():105-113. PubMed ID: 27987805
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advanced Recycled Polyethylene Terephthalate Aerogels from Plastic Waste for Acoustic and Thermal Insulation Applications.
    Koh HW; Le DK; Ng GN; Zhang X; Phan-Thien N; Kureemun U; Duong HM
    Gels; 2018 May; 4(2):. PubMed ID: 30674819
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.