BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 23789902)

  • 1. Thermodynamic characterization of five key kinetic parameters that define neuronal nitric oxide synthase catalysis.
    Haque MM; Tejero J; Bayachou M; Wang ZQ; Fadlalla M; Stuehr DJ
    FEBS J; 2013 Sep; 280(18):4439-53. PubMed ID: 23789902
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neutralizing a surface charge on the FMN subdomain increases the activity of neuronal nitric-oxide synthase by enhancing the oxygen reactivity of the enzyme heme-nitric oxide complex.
    Haque MM; Fadlalla M; Wang ZQ; Ray SS; Panda K; Stuehr DJ
    J Biol Chem; 2009 Jul; 284(29):19237-47. PubMed ID: 19473991
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A tryptophan that modulates tetrahydrobiopterin-dependent electron transfer in nitric oxide synthase regulates enzyme catalysis by additional mechanisms.
    Wang ZQ; Wei CC; Santolini J; Panda K; Wang Q; Stuehr DJ
    Biochemistry; 2005 Mar; 44(12):4676-90. PubMed ID: 15779894
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxygenase domain of Drosophila melanogaster nitric oxide synthase: unique kinetic parameters enable a more efficient NO release.
    Ray SS; Tejero J; Wang ZQ; Dutta T; Bhattacharjee A; Regulski M; Tully T; Ghosh S; Stuehr DJ
    Biochemistry; 2007 Oct; 46(42):11857-64. PubMed ID: 17900148
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism and regulation of ferrous heme-nitric oxide (NO) oxidation in NO synthases.
    Tejero J; Hunt AP; Santolini J; Lehnert N; Stuehr DJ
    J Biol Chem; 2019 May; 294(19):7904-7916. PubMed ID: 30926606
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tetrahydrobiopterin redox cycling in nitric oxide synthase: evidence supports a through-heme electron delivery.
    Ramasamy S; Haque MM; Gangoda M; Stuehr DJ
    FEBS J; 2016 Dec; 283(24):4491-4501. PubMed ID: 27760279
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermodynamic and kinetic analysis of the nitrosyl, carbonyl, and dioxy heme complexes of neuronal nitric-oxide synthase. The roles of substrate and tetrahydrobiopterin in oxygen activation.
    Ost TW; Daff S
    J Biol Chem; 2005 Jan; 280(2):965-73. PubMed ID: 15507439
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nitric oxide binding to the heme of neuronal nitric-oxide synthase links its activity to changes in oxygen tension.
    Abu-Soud HM; Rousseau DL; Stuehr DJ
    J Biol Chem; 1996 Dec; 271(51):32515-8. PubMed ID: 8955074
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface charges and regulation of FMN to heme electron transfer in nitric-oxide synthase.
    Tejero J; Hannibal L; Mustovich A; Stuehr DJ
    J Biol Chem; 2010 Aug; 285(35):27232-27240. PubMed ID: 20592038
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formation and reactions of the heme-dioxygen intermediate in the first and second steps of nitric oxide synthesis as studied by stopped-flow spectroscopy under single-turnover conditions.
    Boggs S; Huang L; Stuehr DJ
    Biochemistry; 2000 Mar; 39(9):2332-9. PubMed ID: 10694400
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differences in three kinetic parameters underpin the unique catalytic profiles of nitric-oxide synthases I, II, and III.
    Santolini J; Meade AL; Stuehr DJ
    J Biol Chem; 2001 Dec; 276(52):48887-98. PubMed ID: 11684690
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pulsed ENDOR determination of the arginine location in the ferrous-NO form of neuronal NOS.
    Astashkin AV; Elmore BO; Chen L; Fan W; Guillemette JG; Feng C
    J Phys Chem A; 2012 Jun; 116(25):6731-9. PubMed ID: 22667467
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A kinetic simulation model that describes catalysis and regulation in nitric-oxide synthase.
    Santolini J; Adak S; Curran CM; Stuehr DJ
    J Biol Chem; 2001 Jan; 276(2):1233-43. PubMed ID: 11038356
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Redox function of tetrahydrobiopterin and effect of L-arginine on oxygen binding in endothelial nitric oxide synthase.
    Berka V; Yeh HC; Gao D; Kiran F; Tsai AL
    Biochemistry; 2004 Oct; 43(41):13137-48. PubMed ID: 15476407
    [TBL] [Abstract][Full Text] [Related]  

  • 15. How does a valine residue that modulates heme-NO binding kinetics in inducible NO synthase regulate enzyme catalysis?
    Wang ZQ; Wei CC; Stuehr DJ
    J Inorg Biochem; 2010 Mar; 104(3):349-56. PubMed ID: 20006999
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neuronal nitric oxide synthase self-inactivates by forming a ferrous-nitrosyl complex during aerobic catalysis.
    Abu-Soud HM; Wang J; Rousseau DL; Fukuto JM; Ignarro LJ; Stuehr DJ
    J Biol Chem; 1995 Sep; 270(39):22997-3006. PubMed ID: 7559438
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fast ferrous heme-NO oxidation in nitric oxide synthases.
    Tejero J; Santolini J; Stuehr DJ
    FEBS J; 2009 Aug; 276(16):4505-14. PubMed ID: 19691141
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chimeras of nitric-oxide synthase types I and III establish fundamental correlates between heme reduction, heme-NO complex formation, and catalytic activity.
    Adak S; Aulak KS; Stuehr DJ
    J Biol Chem; 2001 Jun; 276(26):23246-52. PubMed ID: 11313363
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A conserved Val to Ile switch near the heme pocket of animal and bacterial nitric-oxide synthases helps determine their distinct catalytic profiles.
    Wang ZQ; Wei CC; Sharma M; Pant K; Crane BR; Stuehr DJ
    J Biol Chem; 2004 Apr; 279(18):19018-25. PubMed ID: 14976216
    [TBL] [Abstract][Full Text] [Related]  

  • 20. C-terminal tail residue Arg1400 enables NADPH to regulate electron transfer in neuronal nitric-oxide synthase.
    Tiso M; Konas DW; Panda K; Garcin ED; Sharma M; Getzoff ED; Stuehr DJ
    J Biol Chem; 2005 Nov; 280(47):39208-19. PubMed ID: 16150731
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.