These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 23789943)

  • 1. Development of functional polymer surfaces with controlled wettability.
    Anastasiadis SH
    Langmuir; 2013 Jul; 29(30):9277-90. PubMed ID: 23789943
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Micro-micro hierarchy replacing micro-nano hierarchy: a precisely controlled way to produce wear-resistant superhydrophobic polymer surfaces.
    Huovinen E; Hirvi J; Suvanto M; Pakkanen TA
    Langmuir; 2012 Oct; 28(41):14747-55. PubMed ID: 23009694
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temperature- and/or pH-Responsive Surfaces with Controllable Wettability: From Parahydrophobicity to Superhydrophilicity.
    Frysali MA; Anastasiadis SH
    Langmuir; 2017 Sep; 33(36):9106-9114. PubMed ID: 28793185
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wetting on fractal superhydrophobic surfaces from "core-shell" particles: a comparison of theory and experiment.
    Synytska A; Ionov L; Grundke K; Stamm M
    Langmuir; 2009 Mar; 25(5):3132-6. PubMed ID: 19437778
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mimicking natural superhydrophobic surfaces and grasping the wetting process: a review on recent progress in preparing superhydrophobic surfaces.
    Yan YY; Gao N; Barthlott W
    Adv Colloid Interface Sci; 2011 Dec; 169(2):80-105. PubMed ID: 21974918
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent developments in bio-inspired special wettability.
    Liu K; Yao X; Jiang L
    Chem Soc Rev; 2010 Aug; 39(8):3240-55. PubMed ID: 20589267
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photoreversibly switchable superhydrophobic surface with erasable and rewritable pattern.
    Lim HS; Han JT; Kwak D; Jin M; Cho K
    J Am Chem Soc; 2006 Nov; 128(45):14458-9. PubMed ID: 17090019
    [TBL] [Abstract][Full Text] [Related]  

  • 8. One-step hydrothermal creation of hierarchical microstructures toward superhydrophilic and superhydrophobic surfaces.
    Liu X; He J
    Langmuir; 2009 Oct; 25(19):11822-6. PubMed ID: 19788228
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reversibly switchable wettability.
    Xin B; Hao J
    Chem Soc Rev; 2010 Feb; 39(2):769-82. PubMed ID: 20111792
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnetically Responsive Superhydrophobic Surface with Reversibly Switchable Wettability: Fabrication, Deformation, and Switching Performance.
    Sun R; Wu C; Hou B; Li X; Wu J; Liu C; Chen M
    ACS Appl Mater Interfaces; 2023 Nov; ():. PubMed ID: 37922148
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tunable wetting of polymer surfaces.
    Yilgor I; Bilgin S; Isik M; Yilgor E
    Langmuir; 2012 Oct; 28(41):14808-14. PubMed ID: 22989033
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioinspired super-antiwetting interfaces with special liquid-solid adhesion.
    Liu M; Zheng Y; Zhai J; Jiang L
    Acc Chem Res; 2010 Mar; 43(3):368-77. PubMed ID: 19954162
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Randomly heterogeneous oleophobic/pH-responsive polymer coatings with reversible wettability transition for multifunctional fabrics and controllable oil-water separation.
    Chi H; Xu Z; Zhang T; Li X; Wu Z; Zhao Y
    J Colloid Interface Sci; 2021 Jul; 594():122-130. PubMed ID: 33756360
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temperature-Responsive, Femtosecond Laser-Ablated Ceramic Surfaces with Switchable Wettability for On-Demand Droplet Transfer.
    Zheng J; Yang B; Wang H; Zhou L; Zhang Z; Zhou Z
    ACS Appl Mater Interfaces; 2023 Mar; 15(10):13740-13752. PubMed ID: 36857747
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-cleaning antireflective coatings assembled from peculiar mesoporous silica nanoparticles.
    Li X; Du X; He J
    Langmuir; 2010 Aug; 26(16):13528-34. PubMed ID: 20695600
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Light-induced switching of surfaces at wetting transitions through photoisomerization of polymer monolayers.
    Groten J; Bunte C; RĂ¼he J
    Langmuir; 2012 Oct; 28(42):15038-46. PubMed ID: 22967018
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Facile synthesis, growth mechanism and reversible superhydrophobic and superhydrophilic properties of non-flaking CuO nanowires grown from porous copper substrates.
    Zhang Qb; Xu D; Hung TF; Zhang K
    Nanotechnology; 2013 Feb; 24(6):065602. PubMed ID: 23340193
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Following the wetting of one-dimensional photoactive surfaces.
    Macias-Montero M; Borras A; Alvarez R; Gonzalez-Elipe AR
    Langmuir; 2012 Oct; 28(42):15047-55. PubMed ID: 22998211
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-assembled monolayers of dendron thiols for electrodeposition of gold nanostructures: toward fabrication of superhydrophobic/superhydrophilic surfaces and pH-responsive surfaces.
    Jiang Y; Wang Z; Yu X; Shi F; Xu H; Zhang X; Smet M; Dehaen W
    Langmuir; 2005 Mar; 21(5):1986-90. PubMed ID: 15723499
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controlling the wettability of hierarchically structured thermoplastics.
    Cortese B; Morgan H
    Langmuir; 2012 Jan; 28(1):896-904. PubMed ID: 22043942
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.