These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 23790002)

  • 1. Milk whey protein modification by coffee-specific phenolics: effect on structural and functional properties.
    Ali M; Homann T; Khalil M; Kruse HP; Rawel H
    J Agric Food Chem; 2013 Jul; 61(28):6911-20. PubMed ID: 23790002
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization by ionization mass spectrometry of lactosyl beta-lactoglobulin conjugates formed during heat treatment of milk and whey and identification of one lactose-binding site.
    Leonil J; Molle D; Fauquant J; Maubois JL; Pearce RJ; Bouhallab S
    J Dairy Sci; 1997 Oct; 80(10):2270-81. PubMed ID: 9361199
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Charge modifications to improve the emulsifying properties of whey protein isolate.
    Ma H; Forssell P; Partanen R; Buchert J; Boer H
    J Agric Food Chem; 2011 Dec; 59(24):13246-53. PubMed ID: 22060038
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MALDI-TOF MS characterization of glycation products of whey proteins in a glucose/galactose model system and lactose-free milk.
    Carulli S; Calvano CD; Palmisano F; Pischetsrieder M
    J Agric Food Chem; 2011 Mar; 59(5):1793-803. PubMed ID: 21319853
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Model studies on reactions of plant phenols with whey proteins.
    Rawel HM; Kroll J; Hohl UC
    Nahrung; 2001 Apr; 45(2):72-81. PubMed ID: 11379291
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection and sequence determination of a new variant beta-lactoglobulin II from donkey.
    Cunsolo V; Costa A; Saletti R; Muccilli V; Foti S
    Rapid Commun Mass Spectrom; 2007; 21(8):1438-46. PubMed ID: 17377935
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermal modifications of structure and co-denaturation of alpha-lactalbumin and beta-lactoglobulin induce changes of solubility and susceptibility to proteases.
    Bertrand-Harb C; Baday A; Dalgalarrondo M; Chobert JM; Haertlé T
    Nahrung; 2002 Aug; 46(4):283-9. PubMed ID: 12224426
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification and site-specific relative quantification of beta-lactoglobulin modifications in heated milk and dairy products.
    Meltretter J; Becker CM; Pischetsrieder M
    J Agric Food Chem; 2008 Jul; 56(13):5165-71. PubMed ID: 18537261
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization and modeling of the interactions between coffee storage proteins and phenolic compounds.
    Ali M; Homann T; Kreisel J; Khalil M; Puhlmann R; Kruse HP; Rawel H
    J Agric Food Chem; 2012 Nov; 60(46):11601-8. PubMed ID: 23110671
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Complexation of bovine beta-lactoglobulin with 11S protein fractions of soybean (Glycine max) and sesame (Sesamum indicum).
    Anuradha SN; Prakash V
    Int J Food Sci Nutr; 2009; 60 Suppl 1():27-42. PubMed ID: 19330636
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improvement of solubility and of emulsifying properties of milk proteins at acid pHs by esterification.
    Sitohy M; Chobert JM; Haertlé T
    Nahrung; 2001 Apr; 45(2):87-93. PubMed ID: 11379293
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heat-induced redistribution of disulfide bonds in milk proteins. 2. Disulfide bonding patterns between bovine beta-lactoglobulin and kappa-casein.
    Lowe EK; Anema SG; Bienvenue A; Boland MJ; Creamer LK; Jiménez-Flores R
    J Agric Food Chem; 2004 Dec; 52(25):7669-80. PubMed ID: 15675819
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proteomic analysis of temperature-dependent changes in stored UHT milk.
    Holland JW; Gupta R; Deeth HC; Alewood PF
    J Agric Food Chem; 2011 Mar; 59(5):1837-46. PubMed ID: 21322568
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of the lactosylation of whey proteins by liquid chromatography-mass spectrometry.
    Czerwenka C; Maier I; Pittner F; Lindner W
    J Agric Food Chem; 2006 Nov; 54(23):8874-82. PubMed ID: 17090137
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of molecular weights of caprine milk proteins by matrix-assisted laser desorption/ionization mass spectrometry.
    Ham JS; Han GS; Jeong SG; Seol KH; Jang AR; Oh MH; Kim DH; Park YW
    J Dairy Sci; 2012 Jan; 95(1):15-9. PubMed ID: 22192180
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of heat treatment of dairy products by MALDI-TOF-MS.
    Meltretter J; Birlouez-Aragon I; Becker CM; Pischetsrieder M
    Mol Nutr Food Res; 2009 Dec; 53(12):1487-95. PubMed ID: 19760680
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coalescence stability of emulsions containing globular milk proteins.
    Tcholakova S; Denkov ND; Ivanov IB; Campbell B
    Adv Colloid Interface Sci; 2006 Nov; 123-126():259-93. PubMed ID: 16854363
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection of sheep and goat milk adulterations by direct MALDI-TOF MS analysis of milk tryptic digests.
    Calvano CD; De Ceglie C; Monopoli A; Zambonin CG
    J Mass Spectrom; 2012 Sep; 47(9):1141-9. PubMed ID: 22972782
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of adulteration in milk by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.
    Cozzolino R; Passalacqua S; Salemi S; Malvagna P; Spina E; Garozzo D
    J Mass Spectrom; 2001 Sep; 36(9):1031-7. PubMed ID: 11599081
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of the effect of temperature changes combined with different alkaline pH on the β-lactoglobulin trypsin hydrolysis pattern using MALDI-TOF-MS/MS.
    Chelulei Cheison S; Brand J; Leeb E; Kulozik U
    J Agric Food Chem; 2011 Mar; 59(5):1572-81. PubMed ID: 21319805
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.