BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 23790282)

  • 1. A common structural theme in histone chaperones mimics interhistone contacts.
    Elsässer SJ
    Trends Biochem Sci; 2013 Jul; 38(7):333-6. PubMed ID: 23790282
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural and mechanistic insights into ATRX-dependent and -independent functions of the histone chaperone DAXX.
    Hoelper D; Huang H; Jain AY; Patel DJ; Lewis PW
    Nat Commun; 2017 Oct; 8(1):1193. PubMed ID: 29084956
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural basis for recognition of centromere histone variant CenH3 by the chaperone Scm3.
    Zhou Z; Feng H; Zhou BR; Ghirlando R; Hu K; Zwolak A; Miller Jenkins LM; Xiao H; Tjandra N; Wu C; Bai Y
    Nature; 2011 Apr; 472(7342):234-7. PubMed ID: 21412236
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DAXX envelops a histone H3.3-H4 dimer for H3.3-specific recognition.
    Elsässer SJ; Huang H; Lewis PW; Chin JW; Allis CD; Patel DJ
    Nature; 2012 Nov; 491(7425):560-5. PubMed ID: 23075851
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonhistone Scm3 binds to AT-rich DNA to organize atypical centromeric nucleosome of budding yeast.
    Xiao H; Mizuguchi G; Wisniewski J; Huang Y; Wei D; Wu C
    Mol Cell; 2011 Aug; 43(3):369-80. PubMed ID: 21816344
    [TBL] [Abstract][Full Text] [Related]  

  • 6. H3.Y discriminates between HIRA and DAXX chaperone complexes and reveals unexpected insights into human DAXX-H3.3-H4 binding and deposition requirements.
    Zink LM; Delbarre E; Eberl HC; Keilhauer EC; Bönisch C; Pünzeler S; Bartkuhn M; Collas P; Mann M; Hake SB
    Nucleic Acids Res; 2017 Jun; 45(10):5691-5706. PubMed ID: 28334823
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Abundant Histone Chaperones Spt6 and FACT Collaborate to Assemble, Inspect, and Maintain Chromatin Structure in Saccharomyces cerevisiae.
    McCullough L; Connell Z; Petersen C; Formosa T
    Genetics; 2015 Nov; 201(3):1031-45. PubMed ID: 26416482
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insight into the mechanism of nucleosome reorganization from histone mutants that suppress defects in the FACT histone chaperone.
    McCullough L; Rawlins R; Olsen A; Xin H; Stillman DJ; Formosa T
    Genetics; 2011 Aug; 188(4):835-46. PubMed ID: 21625001
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Histone chaperone Anp32e removes H2A.Z from DNA double-strand breaks and promotes nucleosome reorganization and DNA repair.
    Gursoy-Yuzugullu O; Ayrapetov MK; Price BD
    Proc Natl Acad Sci U S A; 2015 Jun; 112(24):7507-12. PubMed ID: 26034280
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Histone chaperone networks shaping chromatin function.
    Hammond CM; Strømme CB; Huang H; Patel DJ; Groth A
    Nat Rev Mol Cell Biol; 2017 Mar; 18(3):141-158. PubMed ID: 28053344
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The death-associated protein DAXX is a novel histone chaperone involved in the replication-independent deposition of H3.3.
    Drané P; Ouararhni K; Depaux A; Shuaib M; Hamiche A
    Genes Dev; 2010 Jun; 24(12):1253-65. PubMed ID: 20504901
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DAXX-dependent supply of soluble (H3.3-H4) dimers to PML bodies pending deposition into chromatin.
    Delbarre E; Ivanauskiene K; Küntziger T; Collas P
    Genome Res; 2013 Mar; 23(3):440-51. PubMed ID: 23222847
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Histone chaperones FACT and Spt6 prevent histone variants from turning into histone deviants.
    Jeronimo C; Robert F
    Bioessays; 2016 May; 38(5):420-6. PubMed ID: 26990181
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The FACT histone chaperone guides histone H4 into its nucleosomal conformation in Saccharomyces cerevisiae.
    McCullough L; Poe B; Connell Z; Xin H; Formosa T
    Genetics; 2013 Sep; 195(1):101-13. PubMed ID: 23833181
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dot1 regulates nucleosome dynamics by its inherent histone chaperone activity in yeast.
    Lee S; Oh S; Jeong K; Jo H; Choi Y; Seo HD; Kim M; Choe J; Kwon CS; Lee D
    Nat Commun; 2018 Jan; 9(1):240. PubMed ID: 29339748
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nucleosome Positioning and Spacing: From Mechanism to Function.
    Singh AK; Mueller-Planitz F
    J Mol Biol; 2021 Mar; 433(6):166847. PubMed ID: 33539878
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure-function studies of histone H3/H4 tetramer maintenance during transcription by chaperone Spt2.
    Chen S; Rufiange A; Huang H; Rajashankar KR; Nourani A; Patel DJ
    Genes Dev; 2015 Jun; 29(12):1326-40. PubMed ID: 26109053
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The histone chaperones Nap1 and Vps75 bind histones H3 and H4 in a tetrameric conformation.
    Bowman A; Ward R; Wiechens N; Singh V; El-Mkami H; Norman DG; Owen-Hughes T
    Mol Cell; 2011 Feb; 41(4):398-408. PubMed ID: 21329878
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The right place at the right time: chaperoning core histone variants.
    Mattiroli F; D'Arcy S; Luger K
    EMBO Rep; 2015 Nov; 16(11):1454-66. PubMed ID: 26459557
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism of centromere recruitment of the CENP-A chaperone HJURP and its implications for centromere licensing.
    Pan D; Walstein K; Take A; Bier D; Kaiser N; Musacchio A
    Nat Commun; 2019 Sep; 10(1):4046. PubMed ID: 31492860
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.