These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 23790285)

  • 1. Liquid phase microextraction strategies combined with total reflection X-ray spectrometry for the determination of low amounts of inorganic antimony species in waters.
    Marguí E; Sagué M; Queralt I; Hidalgo M
    Anal Chim Acta; 2013 Jul; 786():8-15. PubMed ID: 23790285
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hollow fiber liquid phase microextraction combined with total reflection X-ray fluorescence spectrometry for the determination of trace level inorganic arsenic species in waters.
    Majumder S; Marguí E; Roman-Ross G; Chatterjee D; Hidalgo M
    Talanta; 2020 Sep; 217():121005. PubMed ID: 32498873
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Speciation of antimony(III) and antimony(V) by electrothermal atomic absorption spectrometry after ultrasound-assisted emulsification of solidified floating organic drop microextraction.
    Wen S; Zhu X
    Talanta; 2013 Oct; 115():814-8. PubMed ID: 24054667
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solid phase extraction for the speciation and preconcentration of inorganic selenium in water samples: a review.
    Herrero Latorre C; Barciela García J; García Martín S; Peña Crecente RM
    Anal Chim Acta; 2013 Dec; 804():37-49. PubMed ID: 24267061
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous trace determination of acidic non-steroidal anti-inflammatory drugs in purified water, tap water, juice, soda and energy drink by hollow fiber-based liquid-phase microextraction and ultra-high pressure liquid chromatography coupled to tandem mass spectrometry.
    Zhang H; Du Z; Ji Y; Mei M
    Talanta; 2013 May; 109():177-84. PubMed ID: 23618157
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of ultrasound-assisted emulsification and dispersive liquid-liquid microextraction methods for the speciation of inorganic selenium in environmental water samples using low density extraction solvents.
    Najafi NM; Tavakoli H; Abdollahzadeh Y; Alizadeh R
    Anal Chim Acta; 2012 Feb; 714():82-8. PubMed ID: 22244140
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low-density solvent-based dispersive liquid-liquid microextraction combined with single-drop microextraction for the fast determination of chlorophenols in environmental water samples by high performance liquid chromatography-ultraviolet detection.
    Li X; Xue A; Chen H; Li S
    J Chromatogr A; 2013 Mar; 1280():9-15. PubMed ID: 23375770
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hollow-fiber liquid-phase microextraction for the determination of pesticides and metabolites in soils and water samples using HPLC and fluorescence detection.
    Asensio-Ramos M; Hernández-Borges J; González-Hernández G; Rodríguez-Delgado MÁ
    Electrophoresis; 2012 Jul; 33(14):2184-91. PubMed ID: 22821496
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development and validation of HPLC-ICP-MS method for the determination inorganic Cr, As and Sb speciation forms and its application for Pławniowice reservoir (Poland) water and bottom sediments variability study.
    Jabłońska-Czapla M; Szopa S; Grygoyć K; Łyko A; Michalski R
    Talanta; 2014 Mar; 120():475-83. PubMed ID: 24468399
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vortex-assisted micro-solid-phase extraction followed by low-density solvent based dispersive liquid-liquid microextraction for the fast and efficient determination of phthalate esters in river water samples.
    Guo L; Lee HK
    J Chromatogr A; 2013 Jul; 1300():24-30. PubMed ID: 23374370
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ionic liquids dispersive liquid-liquid microextraction and HPLC-atomic fluorescence spectrometric determination of mercury species in environmental waters.
    Song X; Ye M; Tang X; Wang C
    J Sep Sci; 2013 Jan; 36(2):414-20. PubMed ID: 23255332
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Indirect spectrophotometric determination of ultra trace amounts of selenium based on dispersive liquid-liquid microextraction-solidified floating organic drop.
    Haji Shabani AM; Dadfarnia S; Nozohor M
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Dec; 116():1-5. PubMed ID: 23896290
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analytical approaches for Hg determination in wastewater samples by means of total reflection X-ray fluorescence spectrometry.
    Marguí E; Kregsamer P; Hidalgo M; Tapias J; Queralt I; Streli C
    Talanta; 2010 Jul; 82(2):821-7. PubMed ID: 20602976
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simultaneous speciation of inorganic selenium and antimony in water samples by electrothermal vaporization inductively coupled plasma mass spectrometry following selective cloud point extraction.
    Li Y; Hu B; He M; Xiang G
    Water Res; 2008 Feb; 42(4-5):1195-203. PubMed ID: 17904192
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of hollow fiber liquid phase microextraction and dispersive liquid-liquid microextraction for the determination of organosulfur pesticides in environmental and beverage samples by gas chromatography with flame photometric detection.
    Xiong J; Hu B
    J Chromatogr A; 2008 Jun; 1193(1-2):7-18. PubMed ID: 18439612
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of response surface methodology for optimization of ionic liquid-based dispersive liquid-liquid microextraction of cadmium from water samples.
    Rajabi M; Kamalabadi M; Jamali MR; Zolgharnein J; Asanjarani N
    Hum Exp Toxicol; 2013 Jun; 32(6):620-31. PubMed ID: 22893353
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low-density extraction solvent based solvent-terminated dispersive liquid-liquid microextraction for quantitative determination of ionizable pesticides in environmental waters.
    Tolcha T; Merdassa Y; Megersa N
    J Sep Sci; 2013 Mar; 36(6):1119-27. PubMed ID: 23457115
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In-syringe demulsified dispersive liquid-liquid microextraction and high performance liquid chromatography-mass spectrometry for the determination of trace fungicides in environmental water samples.
    Xia Y; Cheng M; Guo F; Wang X; Cheng J
    Anal Chim Acta; 2012 Apr; 724():47-53. PubMed ID: 22483208
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solid phase microextraction method using a novel polystyrene oleic acid imidazole polymer in micropipette tip of syringe system for speciation and determination of antimony in environmental and food samples.
    Panhwar AH; Tuzen M; Hazer B; Kazi TG
    Talanta; 2018 Jul; 184():115-121. PubMed ID: 29674021
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of bioaccumulation profile of oestrogens in zebrafish liver by hollow fibre protected liquid phase microextraction with gas chromatography-mass spectrometric detection.
    Kanimozhi S; Basheer C; Neveliappan S; Ang K; Xue F; Lee HK
    J Chromatogr B Analyt Technol Biomed Life Sci; 2012 Nov; 909():37-41. PubMed ID: 23153642
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.