These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 23790299)
41. The structural shift of a DNA template between a hairpin and a dimer tunes the emission color of DNA-templated AgNCs. Shah P; Choi SW; Nagda R; Geczy R; Cho SK; Bhang YJ; Kim TH; Song TY; Lee PH; Kang JH; Thulstrup PW; Bjerrum MJ; Jung IL; Yang SW Nanoscale; 2018 Nov; 10(44):20717-20722. PubMed ID: 30398269 [TBL] [Abstract][Full Text] [Related]
42. Defenses against oxidation in human erythrocytes: role of glutathione reductase in the activation of glucose decarboxylation by hemolytic drugs. Hohl RJ; Kennedy EJ; Frischer H J Lab Clin Med; 1991 Apr; 117(4):325-31. PubMed ID: 1901343 [TBL] [Abstract][Full Text] [Related]
43. Oligonucleotide-stabilized fluorescent silver nanoclusters for sensitive detection of biothiols in biological fluids. Han B; Wang E Biosens Bioelectron; 2011 Jan; 26(5):2585-9. PubMed ID: 21123043 [TBL] [Abstract][Full Text] [Related]
44. Photoluminescence Mechanism of DNA-Templated Silver Nanoclusters: Coupling between Surface Plasmon and Emitter and Sensing of Lysozyme. Liu X; Hu R; Gao Z; Shao N Langmuir; 2015 Jun; 31(21):5859-67. PubMed ID: 25945609 [TBL] [Abstract][Full Text] [Related]
45. Target-induced quenching for highly sensitive detection of nucleic acids based on label-free luminescent supersandwich DNA/silver nanoclusters. Wang G; Zhu Y; Chen L; Wang L; Zhang X Analyst; 2014 Jan; 139(1):165-9. PubMed ID: 24244937 [TBL] [Abstract][Full Text] [Related]
46. Effective detection and cell imaging of prion protein with new prepared targetable yellow-emission silver nanoclusters. Zhou YW; Li CM; Liu Y; Huang CZ Analyst; 2013 Feb; 138(3):873-8. PubMed ID: 23223184 [TBL] [Abstract][Full Text] [Related]
47. An approach toward SNP detection by modulating the fluorescence of DNA-templated silver nanoclusters. Park J; Lee J; Ban C; Kim WJ Biosens Bioelectron; 2013 May; 43():419-24. PubMed ID: 23357006 [TBL] [Abstract][Full Text] [Related]
48. G-quadruplex enhanced fluorescence of DNA-silver nanoclusters and their application in bioimaging. Zhu J; Zhang L; Teng Y; Lou B; Jia X; Gu X; Wang E Nanoscale; 2015 Aug; 7(31):13224-9. PubMed ID: 26186684 [TBL] [Abstract][Full Text] [Related]
49. Biosensing approach for glutathione detection using glutathione reductase and sulfhydryl oxidase bienzymatic system. Timur S; Odaci D; Dincer A; Zihnioglu F; Telefoncu A Talanta; 2008 Feb; 74(5):1492-7. PubMed ID: 18371808 [TBL] [Abstract][Full Text] [Related]
50. A label-free fluorescent probe for the detection of adenosine 5'‑triphosphate via inhibiting the aggregation-induced emission enhancement of glutathione modified silver nanoclusters triggered by zinc ion. Liu X; Yu Y; Lin B; Cao Y; Guo M Spectrochim Acta A Mol Biomol Spectrosc; 2019 May; 214():360-365. PubMed ID: 30802791 [TBL] [Abstract][Full Text] [Related]
51. Ag K-edge EXAFS analysis of DNA-templated fluorescent silver nanoclusters: insight into the structural origins of emission tuning by DNA sequence variations. Neidig ML; Sharma J; Yeh HC; Martinez JS; Conradson SD; Shreve AP J Am Chem Soc; 2011 Aug; 133(31):11837-9. PubMed ID: 21770404 [TBL] [Abstract][Full Text] [Related]
52. Design aspects of bright red emissive silver nanoclusters/DNA probes for microRNA detection. Shah P; Rørvig-Lund A; Chaabane SB; Thulstrup PW; Kjaergaard HG; Fron E; Hofkens J; Yang SW; Vosch T ACS Nano; 2012 Oct; 6(10):8803-14. PubMed ID: 22947065 [TBL] [Abstract][Full Text] [Related]
54. Catalytic formation of silver nanoparticles by bovine serum albumin protected-silver nanoclusters and its application for colorimetric detection of ascorbic acid. Yang XH; Ling J; Peng J; Cao QE; Wang L; Ding ZT; Xiong J Spectrochim Acta A Mol Biomol Spectrosc; 2013 Apr; 106():224-30. PubMed ID: 23396009 [TBL] [Abstract][Full Text] [Related]
55. In-solution multiplex miRNA detection using DNA-templated silver nanocluster probes. Shah P; Thulstrup PW; Cho SK; Bhang YJ; Ahn JC; Choi SW; Bjerrum MJ; Yang SW Analyst; 2014 May; 139(9):2158-66. PubMed ID: 24616905 [TBL] [Abstract][Full Text] [Related]
56. Nicotinamide adenine dinucleotide detection based on silver nanoclusters stabilized by a dumbbell-shaped probe. Wang HY; Ma JL; Yin BC; Ye BC Analyst; 2017 May; 142(10):1765-1771. PubMed ID: 28425549 [TBL] [Abstract][Full Text] [Related]
57. A new substrate for glutathione reductase: Glutathione coated Ag Aydemir D; Hashemkhani M; Durmusoglu EG; Acar HY; Ulusu NN Talanta; 2019 Mar; 194():501-506. PubMed ID: 30609564 [TBL] [Abstract][Full Text] [Related]
58. Lysozyme functionalized silver nanoclusters as a dual channel optical sensor for the effective determination of glutathione. Sam S; S S; Girish Kumar K Talanta; 2024 Sep; 277():126326. PubMed ID: 38820825 [TBL] [Abstract][Full Text] [Related]
59. Fluorometric assay for the determination of glutathione reductase activity. Piggott AM; Karuso P Anal Chem; 2007 Nov; 79(22):8769-73. PubMed ID: 17924649 [TBL] [Abstract][Full Text] [Related]
60. In vivo detection of glutathione disulfide and oxidative stress monitoring using a biosensor. Noh HB; Chandra P; Moon JO; Shim YB Biomaterials; 2012 Mar; 33(9):2600-7. PubMed ID: 22209642 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]