These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 23790318)

  • 1. Dynamic structural changes in microbial membranes in response to high hydrostatic pressure analyzed using time-resolved fluorescence anisotropy measurement.
    Abe F
    Biophys Chem; 2013 Dec; 183():3-8. PubMed ID: 23790318
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Eicosapentaenoic acid plays a role in stabilizing dynamic membrane structure in the deep-sea piezophile Shewanella violacea: a study employing high-pressure time-resolved fluorescence anisotropy measurement.
    Usui K; Hiraki T; Kawamoto J; Kurihara T; Nogi Y; Kato C; Abe F
    Biochim Biophys Acta; 2012 Mar; 1818(3):574-83. PubMed ID: 22037146
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of High Hydrostatic Pressure on Microbial Cell Membranes: Structural and Functional Perspectives.
    Abe F
    Subcell Biochem; 2015; 72():371-81. PubMed ID: 26174391
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The dynamics of lipid motion in sarcoplasmic reticulum membranes determined by steady-state and time-resolved fluorescence measurements on 1,6-diphenyl-1,3,5-hexatriene and related molecules.
    Stubbs CD; Kinosita K; Munkonge F; Quinn PJ; Ikegami A
    Biochim Biophys Acta; 1984 Sep; 775(3):374-80. PubMed ID: 6466678
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of amyloid β-peptide on the fluidity of phosphatidylcholine membranes: Uses and limitations of diphenylhexatriene fluorescence anisotropy.
    Suzuki M; Miura T
    Biochim Biophys Acta; 2015 Mar; 1848(3):753-9. PubMed ID: 25497764
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Homeoviscous adaptation under pressure: the pressure dependence of membrane order in brain myelin membranes of deep-sea fish.
    Behan MK; Macdonald AG; Jones GR; Cossins AR
    Biochim Biophys Acta; 1992 Jan; 1103(2):317-23. PubMed ID: 1543716
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Correlation of membrane order and dynamics derived from time-resolved fluorescence measurements with solute permeability.
    Sutter M; Fiechter T; Imanidis G
    J Pharm Sci; 2004 Aug; 93(8):2090-107. PubMed ID: 15236457
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluconazole modulates membrane rigidity, heterogeneity, and water penetration into the plasma membrane in Saccharomyces cerevisiae.
    Abe F; Usui K; Hiraki T
    Biochemistry; 2009 Sep; 48(36):8494-504. PubMed ID: 19670905
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Omega-3 fatty acids in cellular membranes: a unified concept.
    Valentine RC; Valentine DL
    Prog Lipid Res; 2004 Sep; 43(5):383-402. PubMed ID: 15458813
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of lipid molecular structure and gramicidin A on the core of lipid vesicle bilayers. A time-resolved fluorescence depolarization study.
    Muller JM; van Ginkel G; van Faassen EE
    Biochemistry; 1996 Jan; 35(2):488-97. PubMed ID: 8555219
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calcein release behavior from liposomal bilayer; influence of physicochemical/mechanical/structural properties of lipids.
    Maherani B; Arab-Tehrany E; Kheirolomoom A; Geny D; Linder M
    Biochimie; 2013 Nov; 95(11):2018-33. PubMed ID: 23871914
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Binding of bovine factor Va to phosphatidylcholine membranes.
    Koppaka V; Lentz BR
    Biophys J; 1996 Jun; 70(6):2930-7. PubMed ID: 8744331
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cholesterol supports headgroup superlattice domain formation in fluid phospholipid/cholesterol bilayers.
    Cannon B; Lewis A; Metze J; Thiagarajan V; Vaughn MW; Somerharju P; Virtanen J; Huang J; Cheng KH
    J Phys Chem B; 2006 Mar; 110(12):6339-50. PubMed ID: 16553452
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The interpretation of the time-resolved fluorescence anisotropy of diphenylhexatriene-phosphatidylcholine using the compound motion model.
    Muller JM; van Faassen EE; van Ginkel G
    Biochem Biophys Res Commun; 1994 Jun; 201(2):709-15. PubMed ID: 8003006
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phospholipids of rabbit and bull sperm membranes: structural order parameter and steady-state fluorescence anisotropy of membranes and membrane leaflets.
    Hinkovska-Galcheva V; Srivastava PN
    Mol Reprod Dev; 1993 Jun; 35(2):209-17. PubMed ID: 8318225
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Membrane fluidity of blood cells.
    Hollán S
    Haematologia (Budap); 1996; 27(3):109-27. PubMed ID: 14653448
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pressure effect on the bilayer phase transition of asymmetric lipids with an unsaturated acyl chain.
    Tada K; Goto M; Tamai N; Matsuki H; Kaneshina S
    Ann N Y Acad Sci; 2010 Feb; 1189():77-85. PubMed ID: 20233371
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sphingolipid levels crucially modulate lateral microdomain organization of plasma membrane in living yeast.
    Vecer J; Vesela P; Malinsky J; Herman P
    FEBS Lett; 2014 Jan; 588(3):443-9. PubMed ID: 24333335
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanosecond fluorescence anisotropy decays of 1,6-diphenyl-1,3,5-hexatriene in membranes.
    Hildenbrand K; Nicolau C
    Biochim Biophys Acta; 1979 Jun; 553(3):365-77. PubMed ID: 454589
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Specific effect of polyunsaturated fatty acids on the cholesterol-poor membrane domain in a model membrane.
    Onuki Y; Hagiwara C; Sugibayashi K; Takayama K
    Chem Pharm Bull (Tokyo); 2008 Aug; 56(8):1103-9. PubMed ID: 18670110
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.