BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 23790375)

  • 1. Submillisecond elastic recoil reveals molecular origins of fibrin fiber mechanics.
    Hudson NE; Ding F; Bucay I; O'Brien ET; Gorkun OV; Superfine R; Lord ST; Dokholyan NV; Falvo MR
    Biophys J; 2013 Jun; 104(12):2671-80. PubMed ID: 23790375
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence that αC region is origin of low modulus, high extensibility, and strain stiffening in fibrin fibers.
    Houser JR; Hudson NE; Ping L; O'Brien ET; Superfine R; Lord ST; Falvo MR
    Biophys J; 2010 Nov; 99(9):3038-47. PubMed ID: 21044602
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Revealing the molecular origins of fibrin's elastomeric properties by in situ X-ray scattering.
    Vos BE; Martinez-Torres C; Burla F; Weisel JW; Koenderink GH
    Acta Biomater; 2020 Mar; 104():39-52. PubMed ID: 31923718
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fibrin mechanical properties and their structural origins.
    Litvinov RI; Weisel JW
    Matrix Biol; 2017 Jul; 60-61():110-123. PubMed ID: 27553509
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fibrin fibers have extraordinary extensibility and elasticity.
    Liu W; Jawerth LM; Sparks EA; Falvo MR; Hantgan RR; Superfine R; Lord ST; Guthold M
    Science; 2006 Aug; 313(5787):634. PubMed ID: 16888133
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contribution of nascent cohesive fiber-fiber interactions to the non-linear elasticity of fibrin networks under tensile load.
    Britton S; Kim O; Pancaldi F; Xu Z; Litvinov RI; Weisel JW; Alber M
    Acta Biomater; 2019 Aug; 94():514-523. PubMed ID: 31152942
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The molecular origins of the mechanical properties of fibrin.
    Falvo MR; Gorkun OV; Lord ST
    Biophys Chem; 2010 Nov; 152(1-3):15-20. PubMed ID: 20888119
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural hierarchy governs fibrin gel mechanics.
    Piechocka IK; Bacabac RG; Potters M; Mackintosh FC; Koenderink GH
    Biophys J; 2010 May; 98(10):2281-9. PubMed ID: 20483337
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The elasticity of an individual fibrin fiber in a clot.
    Collet JP; Shuman H; Ledger RE; Lee S; Weisel JW
    Proc Natl Acad Sci U S A; 2005 Jun; 102(26):9133-7. PubMed ID: 15967976
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular interference of fibrin's divalent polymerization mechanism enables modulation of multiscale material properties.
    Brown AC; Baker SR; Douglas AM; Keating M; Alvarez-Elizondo MB; Botvinick EL; Guthold M; Barker TH
    Biomaterials; 2015 May; 49():27-36. PubMed ID: 25725552
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular basis of fibrin clot elasticity.
    Lim BB; Lee EH; Sotomayor M; Schulten K
    Structure; 2008 Mar; 16(3):449-59. PubMed ID: 18294856
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A modular fibrinogen model that captures the stress-strain behavior of fibrin fibers.
    Averett RD; Menn B; Lee EH; Helms CC; Barker T; Guthold M
    Biophys J; 2012 Oct; 103(7):1537-44. PubMed ID: 23062346
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of fibrin(ogen) forced unfolding.
    Zhmurov A; Brown AE; Litvinov RI; Dima RI; Weisel JW; Barsegov V
    Structure; 2011 Nov; 19(11):1615-24. PubMed ID: 22078561
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Probing fibrin's molecular response to shear and tensile deformation with coherent Raman microscopy.
    Wang Y; Kumar S; Nisar A; Bonn M; Rausch MK; Parekh SH
    Acta Biomater; 2021 Feb; 121():383-392. PubMed ID: 33321217
    [TBL] [Abstract][Full Text] [Related]  

  • 15. α-α Cross-links increase fibrin fiber elasticity and stiffness.
    Helms CC; Ariëns RA; Uitte de Willige S; Standeven KF; Guthold M
    Biophys J; 2012 Jan; 102(1):168-75. PubMed ID: 22225811
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strength, deformability and toughness of uncrosslinked fibrin fibers from theoretical reconstruction of stress-strain curves.
    Maksudov F; Daraei A; Sesha A; Marx KA; Guthold M; Barsegov V
    Acta Biomater; 2021 Dec; 136():327-342. PubMed ID: 34606991
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anomalous mechanics of Zn
    Xia J; Cai LH; Wu H; MacKintosh FC; Weitz DA
    Proc Natl Acad Sci U S A; 2021 Mar; 118(10):. PubMed ID: 33649231
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visualization and mechanical manipulations of individual fibrin fibers suggest that fiber cross section has fractal dimension 1.3.
    Guthold M; Liu W; Stephens B; Lord ST; Hantgan RR; Erie DA; Taylor RM; Superfine R
    Biophys J; 2004 Dec; 87(6):4226-36. PubMed ID: 15465869
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stiffening of individual fibrin fibers equitably distributes strain and strengthens networks.
    Hudson NE; Houser JR; O'Brien ET; Taylor RM; Superfine R; Lord ST; Falvo MR
    Biophys J; 2010 Apr; 98(8):1632-40. PubMed ID: 20409484
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Why fibrin biomechanical properties matter for hemostasis and thrombosis.
    Feller T; Connell SDA; Ariёns RAS
    J Thromb Haemost; 2022 Jan; 20(1):6-16. PubMed ID: 34528378
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.