These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Classification of burn injury using Raman spectroscopy and optical coherence tomography: An ex-vivo study on porcine skin. Rangaraju LP; Kunapuli G; Every D; Ayala OD; Ganapathy P; Mahadevan-Jansen A Burns; 2019 May; 45(3):659-670. PubMed ID: 30385061 [TBL] [Abstract][Full Text] [Related]
3. Utilization of laser Doppler flowmetry and tissue spectrophotometry for burn depth assessment using a miniature swine model. Lotter O; Held M; Schiefer J; Werner O; Medved F; Schaller HE; Rahmanian-Schwarz A; Jaminet P; Rothenberger J Wound Repair Regen; 2015; 23(1):132-6. PubMed ID: 25487000 [TBL] [Abstract][Full Text] [Related]
4. Acute discrimination between superficial-partial and deep-partial thickness burns in a preclinical model with laser speckle imaging. Crouzet C; Nguyen JQ; Ponticorvo A; Bernal NP; Durkin AJ; Choi B Burns; 2015 Aug; 41(5):1058-63. PubMed ID: 25814299 [TBL] [Abstract][Full Text] [Related]
5. Utility of spatial frequency domain imaging (SFDI) and laser speckle imaging (LSI) to non-invasively diagnose burn depth in a porcine model. Burmeister DM; Ponticorvo A; Yang B; Becerra SC; Choi B; Durkin AJ; Christy RJ Burns; 2015 Sep; 41(6):1242-52. PubMed ID: 26138371 [TBL] [Abstract][Full Text] [Related]
6. Examination of the Early Diagnostic Applicability of Active Dynamic Thermography for Burn Wound Depth Assessment and Concept Analysis. Prindeze NJ; Fathi P; Mino MJ; Mauskar NA; Travis TE; Paul DW; Moffatt LT; Shupp JW J Burn Care Res; 2015; 36(6):626-35. PubMed ID: 25412050 [TBL] [Abstract][Full Text] [Related]
7. Quantitative assessment of burn injury in porcine skin with high-frequency ultrasonic imaging. Brink JA; Sheets PW; Dines KA; Etchison MR; Hanke CW; Sadove AM Invest Radiol; 1986 Aug; 21(8):645-51. PubMed ID: 3528037 [TBL] [Abstract][Full Text] [Related]
8. Optical coherence tomography provides an optical biopsy of burn wounds in children-a pilot study. Lindert J; Tafazzoli-Lari K; Tüshaus L; Larsen B; Bacia A; Bouteleux M; Adler T; Dalicho V; Vasileidos V; Kisch T; Stang F; Welzel J; Wünsch L J Biomed Opt; 2018 Oct; 23(10):1-6. PubMed ID: 30324791 [TBL] [Abstract][Full Text] [Related]
9. [Direct visualization of microcirculation in burn wounds with OPS imaging--is determination of depth of burns possible?]. Langer S; Hatz R; Messmer K; Homann HH; Peter FW; Steinau HU Kongressbd Dtsch Ges Chir Kongr; 2002; 119():756-8. PubMed ID: 12704926 [TBL] [Abstract][Full Text] [Related]
10. Forward-looking infrared imaging predicts ultimate burn depth in a porcine vertical injury progression model. Miccio J; Parikh S; Marinaro X; Prasad A; McClain S; Singer AJ; Clark RA Burns; 2016 Mar; 42(2):397-404. PubMed ID: 26775220 [TBL] [Abstract][Full Text] [Related]
11. [Influence of the depth of retained denatured dermis on the survival rate of grafted skin in burn swine with deep partial-thickness burn]. Zhao YH; Yang HG; Deng HT; Yuan DL; Xu LH; Huang WQ; Shen YM Zhonghua Shao Shang Za Zhi; 2013 Aug; 29(4):365-70. PubMed ID: 24351536 [TBL] [Abstract][Full Text] [Related]
12. Noninvasive Techniques for the Determination of Burn Severity in Real Time. Burmeister DM; Cerna C; Becerra SC; Sloan M; Wilmink G; Christy RJ J Burn Care Res; 2017; 38(1):e180-e191. PubMed ID: 27355653 [TBL] [Abstract][Full Text] [Related]
13. Surgical wound debridement sequentially characterized in a porcine burn model with multispectral imaging. King DR; Li W; Squiers JJ; Mohan R; Sellke E; Mo W; Zhang X; Fan W; DiMaio JM; Thatcher JE Burns; 2015 Nov; 41(7):1478-87. PubMed ID: 26073358 [TBL] [Abstract][Full Text] [Related]
14. [Preliminary study on the improvement of wound microcirculation and retrospection on several methods of the management of deep partial thickness burn wound]. Sun YH; Yu DN; Chen X; Hu XH; Zhang GA; Yan RY; Tan FJ Zhonghua Shao Shang Za Zhi; 2005 Feb; 21(1):17-20. PubMed ID: 15796836 [TBL] [Abstract][Full Text] [Related]
15. Indocyanine green dye angiography accurately predicts survival in the zone of ischemia in a burn comb model. Fourman MS; Phillips BT; Crawford L; McClain SA; Lin F; Thode HC; Dagum AB; Singer AJ; Clark RA Burns; 2014 Aug; 40(5):940-6. PubMed ID: 24231464 [TBL] [Abstract][Full Text] [Related]
16. [Diagnosis of the deep partial-thickness burn wound of Skh-1 mouse with Optical Coherence Tomography]. Liu SH; Xie WG; Kremer M; Machens HG; Lankenau EM; Huettmann G Zhonghua Shao Shang Za Zhi; 2010 Aug; 26(4):272-5. PubMed ID: 21029684 [TBL] [Abstract][Full Text] [Related]
17. The progression of burn depth in experimental burns: a histological and methodological study. Papp A; Kiraly K; Härmä M; Lahtinen T; Uusaro A; Alhava E Burns; 2004 Nov; 30(7):684-90. PubMed ID: 15475143 [TBL] [Abstract][Full Text] [Related]
19. Relationship between healing time and mean perfusion units of laser Doppler imaging (LDI) in pediatric burns. Cho JK; Moon DJ; Kim SG; Lee HG; Chung SP; Yoon CJ Burns; 2009 Sep; 35(6):818-23. PubMed ID: 19423231 [TBL] [Abstract][Full Text] [Related]
20. The Diagnostic Role of Optical Coherence Tomography (OCT) in Measuring the Depth of Burn and Traumatic Scars for More Accurate Laser Dosimetry: Pilot Study. Waibel JS; Rudnick AC; Wulkan AJ; Holmes JD J Drugs Dermatol; 2016 Nov; 15(11):1375-1380. PubMed ID: 28095550 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]