These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
283 related articles for article (PubMed ID: 23790926)
1. Mass production of the ginsenoside Rg3(S) through the combinative use of two glycoside hydrolases. Kim JK; Cui CH; Liu Q; Yoon MH; Kim SC; Im WT Food Chem; 2013 Nov; 141(2):1369-77. PubMed ID: 23790926 [TBL] [Abstract][Full Text] [Related]
2. Exploration and Characterization of Novel Glycoside Hydrolases from the Whole Genome of Siddiqi MZ; Srinivasan S; Park HY; Im WT Biomolecules; 2020 Feb; 10(2):. PubMed ID: 32059542 [TBL] [Abstract][Full Text] [Related]
3. Bioconversion of ginsenoside Rc into Rd by a novel α-L-arabinofuranosidase, Abf22-3 from Leuconostoc sp. 22-3: cloning, expression, and enzyme characterization. Liu QM; Jung HM; Cui CH; Sung BH; Kim JK; Kim SG; Lee ST; Kim SC; Im WT Antonie Van Leeuwenhoek; 2013 Apr; 103(4):747-54. PubMed ID: 23224374 [TBL] [Abstract][Full Text] [Related]
4. Comparative analysis of the expression level of recombinant ginsenoside-transforming β-glucosidase in GRAS hosts and mass production of the ginsenoside Rh2-Mix. Siddiqi MZ; Cui CH; Park SK; Han NS; Kim SC; Im WT PLoS One; 2017; 12(4):e0176098. PubMed ID: 28423055 [TBL] [Abstract][Full Text] [Related]
5. Biotransformation of ginsenoside Rb1 to Gyp-XVII and minor ginsenoside Rg3 by endophytic bacterium Flavobacterium sp. GE 32 isolated from Panax ginseng. Fu Y Lett Appl Microbiol; 2019 Feb; 68(2):134-141. PubMed ID: 30362617 [TBL] [Abstract][Full Text] [Related]
6. Isolation and characterization of novel ginsenoside-hydrolyzing glycosidase from Microbacterium esteraromaticum that transforms ginsenoside Rb2 to rare ginsenoside 20(S)-Rg3. Quan LH; Wang C; Jin Y; Wang TR; Kim YJ; Yang DC Antonie Van Leeuwenhoek; 2013 Jul; 104(1):129-37. PubMed ID: 23670791 [TBL] [Abstract][Full Text] [Related]
7. Conversion of major ginsenoside Rb1 to 20(S)-ginsenoside Rg3 by Microbacterium sp. GS514. Cheng LQ; Na JR; Bang MH; Kim MK; Yang DC Phytochemistry; 2008 Jan; 69(1):218-24. PubMed ID: 17764709 [TBL] [Abstract][Full Text] [Related]
8. Biotransformation of ginsenosides by hydrolyzing the sugar moieties of ginsenosides using microbial glycosidases. Park CS; Yoo MH; Noh KH; Oh DK Appl Microbiol Biotechnol; 2010 Jun; 87(1):9-19. PubMed ID: 20376631 [TBL] [Abstract][Full Text] [Related]
9. Characterization of a novel arabinose-tolerant α-L-arabinofuranosidase with high ginsenoside Rc to ginsenoside Rd bioconversion productivity. Xie J; Zhao D; Zhao L; Pei J; Xiao W; Ding G; Wang Z; Xu J J Appl Microbiol; 2016 Mar; 120(3):647-60. PubMed ID: 26725313 [TBL] [Abstract][Full Text] [Related]
10. Enhanced production of ginsenoside Rh2( Siddiqi MZ; Ximenes HA; Song BK; Park HY; Lee WH; Han H; Im WT Saudi J Biol Sci; 2021 Aug; 28(8):4668-4676. PubMed ID: 34354454 [TBL] [Abstract][Full Text] [Related]
11. Biotransformation of ginsenoside Rb1 to ginsenoside Rg3 by endophytic bacterium Burkholderia sp. GE 17-7 isolated from Panax ginseng. Fu Y; Yin ZH; Yin CY J Appl Microbiol; 2017 Jun; 122(6):1579-1585. PubMed ID: 28256039 [TBL] [Abstract][Full Text] [Related]
12. Substrate specificity of β-glucosidase from Gordonia terrae for ginsenosides and its application in the production of ginsenosides Rg₃, Rg₂, and Rh₁ from ginseng root extract. Shin KC; Lee HJ; Oh DK J Biosci Bioeng; 2015 May; 119(5):497-504. PubMed ID: 25457989 [TBL] [Abstract][Full Text] [Related]
13. Cooperated biotransformation of ginsenoside extracts into ginsenoside 20(S)-Rg3 by three thermostable glycosidases. Zhang S; Luo J; Xie J; Wang Z; Xiao W; Zhao L J Appl Microbiol; 2020 Mar; 128(3):721-734. PubMed ID: 31715079 [TBL] [Abstract][Full Text] [Related]
14. Generation of ginsenosides Rg3 and Rh2 from North American ginseng. Popovich DG; Kitts DD Phytochemistry; 2004 Feb; 65(3):337-44. PubMed ID: 14751305 [TBL] [Abstract][Full Text] [Related]
15. Production of the Rare Ginsenoside Rh2-MIX (20( Song BK; Kim KM; Choi KD; Im WT J Microbiol Biotechnol; 2017 Jul; 27(7):1233-1241. PubMed ID: 28478658 [TBL] [Abstract][Full Text] [Related]
16. Change of Ginsenoside Profiles in Processed Ginseng by Drying, Steaming, and Puffing. Shin JH; Park YJ; Kim W; Kim DO; Kim BY; Lee H; Baik MY J Microbiol Biotechnol; 2019 Feb; 29(2):222-229. PubMed ID: 30609886 [TBL] [Abstract][Full Text] [Related]
17. Detection of 13 Ginsenosides (Rb1, Rb2, Rc, Rd, Re, Rf, Rg1, Rg3, Rh2, F1, Compound K, 20( Jin S; Jeon JH; Lee S; Kang WY; Seong SJ; Yoon YR; Choi MK; Song IS Molecules; 2019 Jul; 24(14):. PubMed ID: 31323835 [TBL] [Abstract][Full Text] [Related]
18. Red American ginseng: ginsenoside constituents and antiproliferative activities of heat-processed Panax quinquefolius roots. Wang CZ; Aung HH; Ni M; Wu JA; Tong R; Wicks S; He TC; Yuan CS Planta Med; 2007 Jun; 73(7):669-74. PubMed ID: 17538869 [TBL] [Abstract][Full Text] [Related]
19. Enzymatic biotransformation of ginsenoside Rb1 to 20(S)-Rg3 by recombinant β-glucosidase from Microbacterium esteraromaticum. Quan LH; Min JW; Yang DU; Kim YJ; Yang DC Appl Microbiol Biotechnol; 2012 Apr; 94(2):377-84. PubMed ID: 22249721 [TBL] [Abstract][Full Text] [Related]
20. Ginsenoside-Rb2 and 20(S)-Ginsenoside-Rg3 from Korean Red Ginseng Prevent Rotavirus Infection in Newborn Mice. Yang H; Oh KH; Kim HJ; Cho YH; Yoo YC J Microbiol Biotechnol; 2018 Mar; 28(3):391-396. PubMed ID: 29316736 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]