These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
283 related articles for article (PubMed ID: 23790926)
21. Complete Biotransformation of Protopanaxatriol-Type Ginsenosides in Yang EJ; Shin KC; Lee DY; Oh DK J Microbiol Biotechnol; 2018 Feb; 28(2):255-261. PubMed ID: 29169217 [TBL] [Abstract][Full Text] [Related]
22. A Versatile β-Glycosidase from Xu W; Duan C; Ma F; Li D; Li X J Agric Food Chem; 2024 Aug; 72(31):17510-17523. PubMed ID: 39052486 [TBL] [Abstract][Full Text] [Related]
23. Efficient thermal deglycosylation of ginsenoside Rd and its contribution to the improved anticancer activity of ginseng. Kim YJ; Yamabe N; Choi P; Lee JW; Ham J; Kang KS J Agric Food Chem; 2013 Sep; 61(38):9185-91. PubMed ID: 23984628 [TBL] [Abstract][Full Text] [Related]
24. Ginsenoside Rd production from the major ginsenoside Rb(1) by beta-glucosidase from Thermus caldophilus. Son JW; Kim HJ; Oh DK Biotechnol Lett; 2008 Apr; 30(4):713-6. PubMed ID: 17989924 [TBL] [Abstract][Full Text] [Related]
25. Transformation of ginseng saponins to ginsenoside Rh2 by acids and human intestinal bacteria and biological activities of their transformants. Bae EA; Han MJ; Kim EJ; Kim DH Arch Pharm Res; 2004 Jan; 27(1):61-7. PubMed ID: 14969341 [TBL] [Abstract][Full Text] [Related]
26. Highly selective microbial transformation of major ginsenoside Rb1 to gypenoside LXXV by Esteya vermicola CNU120806. Hou JG; Xue JJ; Sun MQ; Wang CY; Liu L; Zhang DL; Lee MR; Gu LJ; Wang CL; Wang YB; Zheng Y; Li W; Sung CK J Appl Microbiol; 2012 Oct; 113(4):807-14. PubMed ID: 22805203 [TBL] [Abstract][Full Text] [Related]
27. Conversion of Ginsenoside Rb1 into Six Types of Highly Bioactive Ginsenoside Rg3 and Its Derivatives by FeCl Yu H; Wang Y; Liu C; Yang J; Xu L; Li G; Song J; Jin F Chem Pharm Bull (Tokyo); 2018; 66(9):901-906. PubMed ID: 30175750 [TBL] [Abstract][Full Text] [Related]
28. Marked production of ginsenosides Rd, F2, Rg3, and compound K by enzymatic method. Ko SR; Suzuki Y; Suzuki K; Choi KJ; Cho BG Chem Pharm Bull (Tokyo); 2007 Oct; 55(10):1522-7. PubMed ID: 17917300 [TBL] [Abstract][Full Text] [Related]
29. Enzymatic hydrolysis increases ginsenoside content in Korean red ginseng (Panax ginseng CA Meyer) and its biotransformation under hydrostatic pressure. Kim HW; Han SH; Lee SW; Choi HS; Suh HJ; Hong KB J Sci Food Agric; 2019 Dec; 99(15):6806-6813. PubMed ID: 31368526 [TBL] [Abstract][Full Text] [Related]
30. Complete conversion of major protopanaxadiol ginsenosides to compound K by the combined use of α-L-arabinofuranosidase and β-galactosidase from Caldicellulosiruptor saccharolyticus and β-glucosidase from Sulfolobus acidocaldarius. Shin KC; Oh HJ; Kim BJ; Oh DK J Biotechnol; 2013 Aug; 167(1):33-40. PubMed ID: 23774035 [TBL] [Abstract][Full Text] [Related]
31. Transformation of ginsenosides Rb1 and Re from Panax ginseng by food microorganisms. Chi H; Ji GE Biotechnol Lett; 2005 Jun; 27(11):765-71. PubMed ID: 16086257 [TBL] [Abstract][Full Text] [Related]
32. Ginsenoside content of berries and roots of three typical Korean ginseng (Panax ginseng) cultivars. Kim YK; Yoo DS; Xu H; Park NI; Kim HH; Choi JE; Park SU Nat Prod Commun; 2009 Jul; 4(7):903-6. PubMed ID: 19731589 [TBL] [Abstract][Full Text] [Related]
33. Cloning, overexpression and characterization of a thermostable β-xylosidase from Thermotoga petrophila and cooperated transformation of ginsenoside extract to ginsenoside 20(S)-Rg3 with a β-glucosidase. Zhang S; Xie J; Zhao L; Pei J; Su E; Xiao W; Wang Z Bioorg Chem; 2019 Apr; 85():159-167. PubMed ID: 30616097 [TBL] [Abstract][Full Text] [Related]
34. Production of ginsenoside Rd from ginsenoside Rc by α-L-arabinofuranosidase from Caldicellulosiruptor saccharolyticus. Shin KC; Lee GW; Oh DK J Microbiol Biotechnol; 2013 Apr; 23(4):483-8. PubMed ID: 23568202 [TBL] [Abstract][Full Text] [Related]
35. Production of bioactive ginsenoside Rg3(S) and compound K using recombinant Li L; Lee SJ; Yuan QP; Im WT; Kim SC; Han NS J Ginseng Res; 2018 Oct; 42(4):412-418. PubMed ID: 30337801 [TBL] [Abstract][Full Text] [Related]
36. Enzymatic preparation of ginsenosides Rg2, Rh1, and F1. Ko SR; Choi KJ; Suzuki K; Suzuki Y Chem Pharm Bull (Tokyo); 2003 Apr; 51(4):404-8. PubMed ID: 12672992 [TBL] [Abstract][Full Text] [Related]
37. Investigation of the hydrolysis of ginsenosides by high performance liquid chromatography-electrospray ionization mass spectrometry. Zhang X; Song F; Cui M; Liu Z; Liu S Planta Med; 2007 Sep; 73(11):1225-9. PubMed ID: 17907075 [TBL] [Abstract][Full Text] [Related]
38. [Fungal biotransformation of ginsenoside Rg3]. Xiuli W; Yan W; Wenqian Z; Yixuan Z Wei Sheng Wu Xue Bao; 2008 Sep; 48(9):1181-5. PubMed ID: 19062641 [TBL] [Abstract][Full Text] [Related]
39. Ginsenoside composition and antiproliferative activities of explosively puffed ginseng (Panax ginseng C.A. Meyer). Yoon SR; Lee GD; Park JH; Lee IS; Kwon JH J Food Sci; 2010 May; 75(4):C378-82. PubMed ID: 20546398 [TBL] [Abstract][Full Text] [Related]
40. 20(S)-ginsenoside Rg3, a neuroprotective agent, inhibits mitochondrial permeability transition pores in rat brain. Tian J; Zhang S; Li G; Liu Z; Xu B Phytother Res; 2009 Apr; 23(4):486-91. PubMed ID: 19003949 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]