BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 23791043)

  • 1. Particulate pollutants are capable to 'degrade' epicuticular waxes and to decrease the drought tolerance of Scots pine (Pinus sylvestris L.).
    Burkhardt J; Pariyar S
    Environ Pollut; 2014 Jan; 184():659-67. PubMed ID: 23791043
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Micromorphology of epicuticular waxes and epistomatal chambers of pine species by electron microscopy and white light scanning interferometry.
    Kim KW; Lee IJ; Kim CS; Lee DK; Park EW
    Microsc Microanal; 2011 Feb; 17(1):118-24. PubMed ID: 21087546
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Drought-induced adaptation of the xylem in Scots pine and pubescent oak.
    Eilmann B; Zweifel R; Buchmann N; Fonti P; Rigling A
    Tree Physiol; 2009 Aug; 29(8):1011-20. PubMed ID: 19483185
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heavy and frequent thinning promotes drought adaptation in Pinus sylvestris forests.
    Sohn JA; Hartig F; Kohler M; Huss J; Bauhus J
    Ecol Appl; 2016 Oct; 26(7):2190-2205. PubMed ID: 27755729
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contrasting ecophysiological strategies related to drought: the case of a mixed stand of Scots pine (Pinus sylvestris) and a submediterranean oak (Quercus subpyrenaica).
    Martín-Gómez P; Aguilera M; Pemán J; Gil-Pelegrín E; Ferrio JP
    Tree Physiol; 2017 Nov; 37(11):1478-1492. PubMed ID: 29040771
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of prolonged drought stress on Scots pine seedling carbon allocation.
    Aaltonen H; Lindén A; Heinonsalo J; Biasi C; Pumpanen J
    Tree Physiol; 2017 Apr; 37(4):418-427. PubMed ID: 27974653
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Epicuticular Wax and White Pine Blister Rust Resistance in Resistant and Susceptible Selections of Eastern White Pine (Pinus strobus).
    Smith JA; Blanchette RA; Burnes TA; Gillman JH; David AJ
    Phytopathology; 2006 Feb; 96(2):171-7. PubMed ID: 18943920
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of species-specific leaf characteristics and reduced water availability on fine particle capture efficiency of trees.
    Räsänen JV; Holopainen T; Joutsensaari J; Ndam C; Pasanen P; Rinnan Å; Kivimäenpää M
    Environ Pollut; 2013 Dec; 183():64-70. PubMed ID: 23735814
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of defoliation and root rot pathogen infection in driving the mode of drought-related physiological decline in Scots pine (Pinus sylvestris L.).
    Aguadé D; Poyatos R; Gómez M; Oliva J; Martínez-Vilalta J
    Tree Physiol; 2015 Mar; 35(3):229-42. PubMed ID: 25724949
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Secondary air pollutants : Epistomatal wax erosion of Scots pine needles.
    Gullvåg BM; Frank H; Norokorpi Y
    Environ Sci Pollut Res Int; 1996 Sep; 3(3):159-62. PubMed ID: 24235056
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diversity and negative effect of PM
    Mikhailova TA; Shergina OV
    Environ Sci Pollut Res Int; 2023 Dec; 30(56):119243-119259. PubMed ID: 37924402
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of epicuticular wax crystals on the localization of artificially deposited sub-micron carbon-based aerosols on needles of Cryptomeria japonica.
    Nakaba S; Yamane K; Fukahori M; Nugroho WD; Yamaguchi M; Kuroda K; Sano Y; Wuled Lenggoro I; Izuta T; Funada R
    J Plant Res; 2016 Sep; 129(5):873-881. PubMed ID: 27294967
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Scots pine needle surfaces on radial transects across the north boreal area of Finnish Lapland and the Kola Peninsula of Russia.
    Turunen M; Huttunen S
    Environ Pollut; 1996; 93(2):175-94. PubMed ID: 15091357
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synergistic, additive and antagonistic impacts of drought and herbivory on Pinus sylvestris: leaf, tissue and whole-plant responses and recovery.
    Bansal S; Hallsby G; Löfvenius MO; Nilsson MC
    Tree Physiol; 2013 May; 33(5):451-63. PubMed ID: 23525156
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of summer drought on isoprenoid emissions and carbon sink of three Scots pine provenances.
    Lüpke M; Leuchner M; Steinbrecher R; Menzel A
    Tree Physiol; 2016 Nov; 36(11):1382-1399. PubMed ID: 27591438
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Drought-induced mortality in Scots pine: opening the metabolic black box.
    MacAllister S; Mencuccini M; Sommer U; Engel J; Hudson A; Salmon Y; Dexter KG
    Tree Physiol; 2019 Aug; 39(8):1358-1370. PubMed ID: 31038161
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Linking increasing drought stress to Scots pine mortality and bark beetle infestations.
    Dobbertin M; Wermelinger B; Bigler C; Bürgi M; Carron M; Forster B; Gimmi U; Rigling A
    ScientificWorldJournal; 2007 Mar; 7 Suppl 1():231-9. PubMed ID: 17450301
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Plant epicuticular wax and drought resistance as well as its molecular biology].
    Li WQ; Zhang ZB; Li JJ
    Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2006 Oct; 32(5):505-12. PubMed ID: 17075172
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of below-ground competition during early stages of secondary succession: the case of 3-year-old Scots pine (Pinus sylvestris L.) seedlings in an abandoned grassland.
    Picon-Cochard C; Coll L; Balandier P
    Oecologia; 2006 Jun; 148(3):373-83. PubMed ID: 16489460
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How does the VPD response of isohydric and anisohydric plants depend on leaf surface particles?
    Burkhardt J; Pariyar S
    Plant Biol (Stuttg); 2016 Jan; 18 Suppl 1():91-100. PubMed ID: 26417842
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.