These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
260 related articles for article (PubMed ID: 23791102)
1. The determination and analysis of site-specific rates of mitochondrial reactive oxygen species production. Quinlan CL; Perevoschikova IV; Goncalves RL; Hey-Mogensen M; Brand MD Methods Enzymol; 2013; 526():189-217. PubMed ID: 23791102 [TBL] [Abstract][Full Text] [Related]
2. Sites of superoxide and hydrogen peroxide production by muscle mitochondria assessed ex vivo under conditions mimicking rest and exercise. Goncalves RL; Quinlan CL; Perevoshchikova IV; Hey-Mogensen M; Brand MD J Biol Chem; 2015 Jan; 290(1):209-27. PubMed ID: 25389297 [TBL] [Abstract][Full Text] [Related]
3. Estimation of the hydrogen peroxide producing capacities of liver and cardiac mitochondria isolated from C57BL/6N and C57BL/6J mice. Oldford C; Kuksal N; Gill R; Young A; Mailloux RJ Free Radic Biol Med; 2019 May; 135():15-27. PubMed ID: 30794944 [TBL] [Abstract][Full Text] [Related]
4. Sites of reactive oxygen species generation by mitochondria oxidizing different substrates. Quinlan CL; Perevoshchikova IV; Hey-Mogensen M; Orr AL; Brand MD Redox Biol; 2013; 1(1):304-12. PubMed ID: 24024165 [TBL] [Abstract][Full Text] [Related]
6. The mitochondrial production of reactive oxygen species: mechanisms and implications in human pathology. Lenaz G IUBMB Life; 2001; 52(3-5):159-64. PubMed ID: 11798028 [TBL] [Abstract][Full Text] [Related]
7. Protein S-glutathionylation lowers superoxide/hydrogen peroxide release from skeletal muscle mitochondria through modification of complex I and inhibition of pyruvate uptake. Gill RM; O'Brien M; Young A; Gardiner D; Mailloux RJ PLoS One; 2018; 13(2):e0192801. PubMed ID: 29444156 [TBL] [Abstract][Full Text] [Related]
8. Inhibitors of ROS production by the ubiquinone-binding site of mitochondrial complex I identified by chemical screening. Orr AL; Ashok D; Sarantos MR; Shi T; Hughes RE; Brand MD Free Radic Biol Med; 2013 Dec; 65():1047-1059. PubMed ID: 23994103 [TBL] [Abstract][Full Text] [Related]
9. Ambivalent effects of diazoxide on mitochondrial ROS production at respiratory chain complexes I and III. Dröse S; Hanley PJ; Brandt U Biochim Biophys Acta; 2009 Jun; 1790(6):558-65. PubMed ID: 19364480 [TBL] [Abstract][Full Text] [Related]
10. Pro-oxidant mitochondrial matrix-targeted ubiquinone MitoQ10 acts as anti-oxidant at retarded electron transport or proton pumping within Complex I. Plecitá-Hlavatá L; Jezek J; Jezek P Int J Biochem Cell Biol; 2009; 41(8-9):1697-707. PubMed ID: 19433311 [TBL] [Abstract][Full Text] [Related]
11. Topology of superoxide production from different sites in the mitochondrial electron transport chain. St-Pierre J; Buckingham JA; Roebuck SJ; Brand MD J Biol Chem; 2002 Nov; 277(47):44784-90. PubMed ID: 12237311 [TBL] [Abstract][Full Text] [Related]
12. Characteristics of alpha-glycerophosphate-evoked H2O2 generation in brain mitochondria. Tretter L; Takacs K; Hegedus V; Adam-Vizi V J Neurochem; 2007 Feb; 100(3):650-63. PubMed ID: 17263793 [TBL] [Abstract][Full Text] [Related]
13. Reactive oxygen species are generated by the respiratory complex II--evidence for lack of contribution of the reverse electron flow in complex I. Moreno-Sánchez R; Hernández-Esquivel L; Rivero-Segura NA; Marín-Hernández A; Neuzil J; Ralph SJ; Rodríguez-Enríquez S FEBS J; 2013 Feb; 280(3):927-38. PubMed ID: 23206332 [TBL] [Abstract][Full Text] [Related]
14. Q-site inhibitor induced ROS production of mitochondrial complex II is attenuated by TCA cycle dicarboxylates. Siebels I; Dröse S Biochim Biophys Acta; 2013 Oct; 1827(10):1156-64. PubMed ID: 23800966 [TBL] [Abstract][Full Text] [Related]
15. Nicorandil Affects Mitochondrial Respiratory Chain Function by Increasing Complex III Activity and ROS Production in Skeletal Muscle Mitochondria. Sánchez-Duarte E; Cortés-Rojo C; Sánchez-Briones LA; Campos-García J; Saavedra-Molina A; Delgado-Enciso I; López-Lemus UA; Montoya-Pérez R J Membr Biol; 2020 Aug; 253(4):309-318. PubMed ID: 32620983 [TBL] [Abstract][Full Text] [Related]
17. Electron transport chain-dependent and -independent mechanisms of mitochondrial H2O2 emission during long-chain fatty acid oxidation. Seifert EL; Estey C; Xuan JY; Harper ME J Biol Chem; 2010 Feb; 285(8):5748-58. PubMed ID: 20032466 [TBL] [Abstract][Full Text] [Related]
18. The use of site-specific suppressors to measure the relative contributions of different mitochondrial sites to skeletal muscle superoxide and hydrogen peroxide production. Goncalves RLS; Watson MA; Wong HS; Orr AL; Brand MD Redox Biol; 2020 Jan; 28():101341. PubMed ID: 31627168 [TBL] [Abstract][Full Text] [Related]
19. Mitochondrial complex II can generate reactive oxygen species at high rates in both the forward and reverse reactions. Quinlan CL; Orr AL; Perevoshchikova IV; Treberg JR; Ackrell BA; Brand MD J Biol Chem; 2012 Aug; 287(32):27255-64. PubMed ID: 22689576 [TBL] [Abstract][Full Text] [Related]
20. Sites of superoxide and hydrogen peroxide production during fatty acid oxidation in rat skeletal muscle mitochondria. Perevoshchikova IV; Quinlan CL; Orr AL; Gerencser AA; Brand MD Free Radic Biol Med; 2013 Aug; 61():298-309. PubMed ID: 23583329 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]