These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
260 related articles for article (PubMed ID: 23791102)
21. Site of mitochondrial reactive oxygen species production in skeletal muscle of chronic obstructive pulmonary disease and its relationship with exercise oxidative stress. Puente-Maestu L; Tejedor A; Lázaro A; de Miguel J; Alvarez-Sala L; González-Aragoneses F; Simón C; Agustí A Am J Respir Cell Mol Biol; 2012 Sep; 47(3):358-62. PubMed ID: 22493009 [TBL] [Abstract][Full Text] [Related]
22. Increased reactive oxygen species production and lower abundance of complex I subunits and carnitine palmitoyltransferase 1B protein despite normal mitochondrial respiration in insulin-resistant human skeletal muscle. Lefort N; Glancy B; Bowen B; Willis WT; Bailowitz Z; De Filippis EA; Brophy C; Meyer C; Højlund K; Yi Z; Mandarino LJ Diabetes; 2010 Oct; 59(10):2444-52. PubMed ID: 20682693 [TBL] [Abstract][Full Text] [Related]
23. Mitochondrial reactive oxygen species production by fish muscle mitochondria: Potential role in acute heat-induced oxidative stress. Banh S; Wiens L; Sotiri E; Treberg JR Comp Biochem Physiol B Biochem Mol Biol; 2016 Jan; 191():99-107. PubMed ID: 26456509 [TBL] [Abstract][Full Text] [Related]
25. Effects of copper and temperature on heart mitochondrial hydrogen peroxide production. Isei MO; Kamunde C Free Radic Biol Med; 2020 Feb; 147():114-128. PubMed ID: 31825803 [TBL] [Abstract][Full Text] [Related]
26. Oxidative impairment of mitochondrial electron transport chain complexes in rostral ventrolateral medulla contributes to neurogenic hypertension. Chan SH; Wu KL; Chang AY; Tai MH; Chan JY Hypertension; 2009 Feb; 53(2):217-27. PubMed ID: 19114648 [TBL] [Abstract][Full Text] [Related]
27. Mitochondria-targeted antioxidant preserves contractile properties and mitochondrial function of skeletal muscle in aged rats. Javadov S; Jang S; Rodriguez-Reyes N; Rodriguez-Zayas AE; Soto Hernandez J; Krainz T; Wipf P; Frontera W Oncotarget; 2015 Nov; 6(37):39469-81. PubMed ID: 26415224 [TBL] [Abstract][Full Text] [Related]
28. Reactive oxygen species and nitric oxide in plant mitochondria: origin and redundant regulatory systems. Blokhina O; Fagerstedt KV Physiol Plant; 2010 Apr; 138(4):447-62. PubMed ID: 20059731 [TBL] [Abstract][Full Text] [Related]
29. Diphenyleneiodonium acutely inhibits reactive oxygen species production by mitochondrial complex I during reverse, but not forward electron transport. Lambert AJ; Buckingham JA; Boysen HM; Brand MD Biochim Biophys Acta; 2008 May; 1777(5):397-403. PubMed ID: 18395512 [TBL] [Abstract][Full Text] [Related]
30. Oxygen-dependence of mitochondrial ROS production as detected by Amplex Red assay. Grivennikova VG; Kareyeva AV; Vinogradov AD Redox Biol; 2018 Jul; 17():192-199. PubMed ID: 29702406 [TBL] [Abstract][Full Text] [Related]
31. Shift in the localization of sites of hydrogen peroxide production in brain mitochondria by mitochondrial stress. Gyulkhandanyan AV; Pennefather PS J Neurochem; 2004 Jul; 90(2):405-21. PubMed ID: 15228597 [TBL] [Abstract][Full Text] [Related]
32. Identifying Site-Specific Superoxide and Hydrogen Peroxide Production Rates From the Mitochondrial Electron Transport System Using a Computational Strategy. Duong QV; Levitsky Y; Dessinger MJ; Strubbe-Rivera JO; Bazil JN Function (Oxf); 2021; 2(6):zqab050. PubMed ID: 35330793 [TBL] [Abstract][Full Text] [Related]
33. Characterization of the stimulus for reactive oxygen species generation in calcium-overloaded mitochondria. Rodrigues FP; Pestana CR; Dos Santos GA; Pardo-Andreu GL; Santos AC; Uyemura SA; Alberici LC; Curti C Redox Rep; 2011; 16(3):108-13. PubMed ID: 21801492 [TBL] [Abstract][Full Text] [Related]
34. Skeletal muscle maximal mitochondrial activity in ambulatory children with cerebral palsy. Dayanidhi S; Buckner EH; Redmond RS; Chambers HG; Schenk S; Lieber RL Dev Med Child Neurol; 2021 Oct; 63(10):1194-1203. PubMed ID: 33393083 [TBL] [Abstract][Full Text] [Related]
35. Production of reactive oxygen species by mitochondria: central role of complex III. Chen Q; Vazquez EJ; Moghaddas S; Hoppel CL; Lesnefsky EJ J Biol Chem; 2003 Sep; 278(38):36027-31. PubMed ID: 12840017 [TBL] [Abstract][Full Text] [Related]
36. S1QELs suppress mitochondrial superoxide/hydrogen peroxide production from site I Wong HS; Monternier PA; Brand MD Free Radic Biol Med; 2019 Nov; 143():545-559. PubMed ID: 31518685 [TBL] [Abstract][Full Text] [Related]
37. Effect of skeletal muscle mitochondrial phenotype on H Kamunde C; Wijayakulathilake Y; Okoye C; Chinnappareddy N; Kalvani Z; Tetteh P; van den Heuvel M; Sappal R; Stevens D Comp Biochem Physiol B Biochem Mol Biol; 2024; 271():110940. PubMed ID: 38190961 [TBL] [Abstract][Full Text] [Related]
38. High efficiency of ROS production by glycerophosphate dehydrogenase in mammalian mitochondria. Mrácek T; Pecinová A; Vrbacký M; Drahota Z; Houstek J Arch Biochem Biophys; 2009 Jan; 481(1):30-6. PubMed ID: 18952046 [TBL] [Abstract][Full Text] [Related]
39. Manganese ions induce H2O2 generation at the ubiquinone binding site of mitochondrial complex II. Bonke E; Zwicker K; Dröse S Arch Biochem Biophys; 2015 Aug; 580():75-83. PubMed ID: 26116786 [TBL] [Abstract][Full Text] [Related]
40. Decreased hydrogen peroxide production and mitochondrial respiration in skeletal muscle but not cardiac muscle of the green-striped burrowing frog, a natural model of muscle disuse. Reilly BD; Hickey AJ; Cramp RL; Franklin CE J Exp Biol; 2014 Apr; 217(Pt 7):1087-93. PubMed ID: 24311816 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]