BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 23791103)

  • 1. A microfluidic systems biology approach for live single-cell mitochondrial ROS imaging.
    Kniss A; Lu H; Jones DP; Kemp ML
    Methods Enzymol; 2013; 526():219-30. PubMed ID: 23791103
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic fluorescent imaging analysis of mitochondrial redox in single cells with a microfluidic device.
    Li Q; Li W; Cui S; Sun Q; Si H; Chen Z; Xu K; Li L; Tang B
    Biosens Bioelectron; 2019 Mar; 129():132-138. PubMed ID: 30690177
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new and reliable method for live imaging and quantification of reactive oxygen species in Botrytis cinerea: technological advancement.
    Marschall R; Tudzynski P
    Fungal Genet Biol; 2014 Oct; 71():68-75. PubMed ID: 25220147
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrochemical biosensors for on-chip detection of oxidative stress from cells.
    Enomoto J; Matharu Z; Revzin A
    Methods Enzymol; 2013; 526():107-21. PubMed ID: 23791096
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plate-Based Measurement of Superoxide and Hydrogen Peroxide Production by Isolated Mitochondria.
    Wong HS; Monternier PA; Orr AL; Brand MD
    Methods Mol Biol; 2018; 1782():287-299. PubMed ID: 29851006
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorescent probes for the detection of reactive oxygen species in human spermatozoa.
    Escada-Rebelo S; Mora FG; Sousa AP; Almeida-Santos T; Paiva A; Ramalho-Santos J
    Asian J Androl; 2020; 22(5):465-471. PubMed ID: 31939350
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Imaging mitochondrial reactive oxygen species with fluorescent probes: current applications and challenges.
    Zhang X; Gao F
    Free Radic Res; 2015 Apr; 49(4):374-82. PubMed ID: 25789762
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Emerging technologies for optical spectral detection of reactive oxygen species.
    Herman J; Zhang Y; Castranova V; Neal SL
    Anal Bioanal Chem; 2018 Sep; 410(24):6079-6095. PubMed ID: 30054693
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sea urchin spermatozoa generate at least two reactive oxygen species; the type of reactive oxygen species changes under different conditions.
    Kazama M; Hino A
    Mol Reprod Dev; 2012 Apr; 79(4):283-95. PubMed ID: 22328344
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Teaching the basics of reactive oxygen species and their relevance to cancer biology: Mitochondrial reactive oxygen species detection, redox signaling, and targeted therapies.
    Kalyanaraman B; Cheng G; Hardy M; Ouari O; Bennett B; Zielonka J
    Redox Biol; 2018 May; 15():347-362. PubMed ID: 29306792
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measuring Mitochondrial Hydrogen Peroxide Levels and Glutathione Redox Equilibrium in Drosophila Neuron Subtypes Using Redox-Sensitive Fluorophores and 3D Imaging.
    Buhlman LM; Keoseyan PP; Houlihan KL; Juba AN
    Methods Mol Biol; 2021; 2276():113-127. PubMed ID: 34060036
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Riding the tiger - physiological and pathological effects of superoxide and hydrogen peroxide generated in the mitochondrial matrix.
    Brand MD
    Crit Rev Biochem Mol Biol; 2020 Dec; 55(6):592-661. PubMed ID: 33148057
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitochondrial production of superoxide radical and hydrogen peroxide.
    Boveris A
    Adv Exp Med Biol; 1977; 78():67-82. PubMed ID: 197811
    [No Abstract]   [Full Text] [Related]  

  • 14. Measuring reactive oxygen and nitrogen species with fluorescent probes: challenges and limitations.
    Kalyanaraman B; Darley-Usmar V; Davies KJ; Dennery PA; Forman HJ; Grisham MB; Mann GE; Moore K; Roberts LJ; Ischiropoulos H
    Free Radic Biol Med; 2012 Jan; 52(1):1-6. PubMed ID: 22027063
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The changes of intracellular H2O2 are an important factor maintaining mitochondria membrane potential of antimycin A-treated As4.1 juxtaglomerular cells.
    Han YW; Kim SZ; Kim SH; Park WH
    Biochem Pharmacol; 2007 Mar; 73(6):863-72. PubMed ID: 17174941
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional roles of superoxide and hydrogen peroxide generated by mitochondrial DNA mutation in regulating tumorigenicity of HepG2 cells.
    Gao W; Xu K; Li P; Tang B
    Cell Biochem Funct; 2011 Jul; 29(5):400-7. PubMed ID: 21590695
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Peptide-bridged dinuclear Ru(II) complex for mitochondrial targeted monitoring of dynamic changes to oxygen concentration and ROS generation in live mammalian cells.
    Martin A; Byrne A; Burke CS; Forster RJ; Keyes TE
    J Am Chem Soc; 2014 Oct; 136(43):15300-9. PubMed ID: 25265566
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An update on methods and approaches for interrogating mitochondrial reactive oxygen species production.
    Mailloux RJ
    Redox Biol; 2021 Sep; 45():102044. PubMed ID: 34157640
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functionalized Quartz Nanopipette for Intracellular Superoxide Sensing: A Tool for Monitoring Reactive Oxygen Species Levels in Single Living Cell.
    Ozel RE; Bulbul G; Perez J; Pourmand N
    ACS Sens; 2018 Jul; 3(7):1316-1321. PubMed ID: 29893547
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measurement of Superoxide Production in Acute Hypoxia by Fixed-Cell Microscopy.
    Hernansanz-Agustín P; Choya-Foces C; Martínez-Ruiz A
    Methods Mol Biol; 2021; 2202():43-50. PubMed ID: 32857344
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.