BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

924 related articles for article (PubMed ID: 23791177)

  • 21. P bodies promote stress granule assembly in Saccharomyces cerevisiae.
    Buchan JR; Muhlrad D; Parker R
    J Cell Biol; 2008 Nov; 183(3):441-55. PubMed ID: 18981231
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mmi1, the yeast homologue of mammalian TCTP, associates with stress granules in heat-shocked cells and modulates proteasome activity.
    Rinnerthaler M; Lejskova R; Grousl T; Stradalova V; Heeren G; Richter K; Breitenbach-Koller L; Malinsky J; Hasek J; Breitenbach M
    PLoS One; 2013; 8(10):e77791. PubMed ID: 24204967
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Valosin containing protein associated fronto-temporal lobar degeneration: clinical presentation, pathologic features and pathogenesis.
    Weihl CC
    Curr Alzheimer Res; 2011 May; 8(3):252-60. PubMed ID: 21222596
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rescue of growth defects of yeast cdc48 mutants by pathogenic IBMPFD-VCPs.
    Takata T; Kimura Y; Ohnuma Y; Kawawaki J; Kakiyama Y; Tanaka K; Kakizuka A
    J Struct Biol; 2012 Aug; 179(2):93-103. PubMed ID: 22728077
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Yeast Smy2 and its human homologs GIGYF1 and -2 regulate Cdc48/VCP function during transcription stress.
    Lehner MH; Walker J; Temcinaite K; Herlihy A; Taschner M; Berger AC; Corbett AH; Dirac Svejstrup AB; Svejstrup JQ
    Cell Rep; 2022 Oct; 41(4):111536. PubMed ID: 36288698
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Processing body and stress granule assembly occur by independent and differentially regulated pathways in Saccharomyces cerevisiae.
    Shah KH; Zhang B; Ramachandran V; Herman PK
    Genetics; 2013 Jan; 193(1):109-23. PubMed ID: 23105015
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biomass conversion inhibitors furfural and 5-hydroxymethylfurfural induce formation of messenger RNP granules and attenuate translation activity in Saccharomyces cerevisiae.
    Iwaki A; Kawai T; Yamamoto Y; Izawa S
    Appl Environ Microbiol; 2013 Mar; 79(5):1661-7. PubMed ID: 23275506
    [TBL] [Abstract][Full Text] [Related]  

  • 28. ATPase-Modulated Stress Granules Contain a Diverse Proteome and Substructure.
    Jain S; Wheeler JR; Walters RW; Agrawal A; Barsic A; Parker R
    Cell; 2016 Jan; 164(3):487-98. PubMed ID: 26777405
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Differential effects of Ydj1 and Sis1 on Hsp70-mediated clearance of stress granules in Saccharomyces cerevisiae.
    Walters RW; Muhlrad D; Garcia J; Parker R
    RNA; 2015 Sep; 21(9):1660-71. PubMed ID: 26199455
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Defects in THO/TREX-2 function cause accumulation of novel cytoplasmic mRNP granules that can be cleared by autophagy.
    Eshleman N; Liu G; McGrath K; Parker R; Buchan JR
    RNA; 2016 Aug; 22(8):1200-14. PubMed ID: 27251550
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Multicolour single-molecule tracking of mRNA interactions with RNP granules.
    Moon SL; Morisaki T; Khong A; Lyon K; Parker R; Stasevich TJ
    Nat Cell Biol; 2019 Feb; 21(2):162-168. PubMed ID: 30664789
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cdc48/VCP and Endocytosis Regulate TDP-43 and FUS Toxicity and Turnover.
    Liu G; Byrd A; Warner AN; Pei F; Basha E; Buchanan A; Buchan JR
    Mol Cell Biol; 2020 Jan; 40(4):. PubMed ID: 31767634
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Adaptive response in stress granule formation and bulk translational repression upon a combined stress of mild heat shock and mild ethanol stress in yeast.
    Yamamoto Y; Izawa S
    Genes Cells; 2013 Nov; 18(11):974-84. PubMed ID: 24033457
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Stress-specific composition, assembly and kinetics of stress granules in Saccharomyces cerevisiae.
    Buchan JR; Yoon JH; Parker R
    J Cell Sci; 2011 Jan; 124(Pt 2):228-39. PubMed ID: 21172806
    [TBL] [Abstract][Full Text] [Related]  

  • 35. TDP-43 mediates degeneration in a novel Drosophila model of disease caused by mutations in VCP/p97.
    Ritson GP; Custer SK; Freibaum BD; Guinto JB; Geffel D; Moore J; Tang W; Winton MJ; Neumann M; Trojanowski JQ; Lee VM; Forman MS; Taylor JP
    J Neurosci; 2010 Jun; 30(22):7729-39. PubMed ID: 20519548
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The budding yeast Cdc48(Shp1) complex promotes cell cycle progression by positive regulation of protein phosphatase 1 (Glc7).
    Böhm S; Buchberger A
    PLoS One; 2013; 8(2):e56486. PubMed ID: 23418575
    [TBL] [Abstract][Full Text] [Related]  

  • 37. VCP/Cdc48 rescues the growth defect of a GPI10 mutant in yeast.
    Ohnuma Y; Takata T; Kawawaki J; Yasuda K; Tanaka K; Kimura Y; Kakizuka A
    FEBS Lett; 2015 Feb; 589(5):576-80. PubMed ID: 25625920
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Impaired protein aggregate handling and clearance underlie the pathogenesis of p97/VCP-associated disease.
    Ju JS; Miller SE; Hanson PI; Weihl CC
    J Biol Chem; 2008 Oct; 283(44):30289-99. PubMed ID: 18715868
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Neuronal-specific overexpression of a mutant valosin-containing protein associated with IBMPFD promotes aberrant ubiquitin and TDP-43 accumulation and cognitive dysfunction in transgenic mice.
    Rodriguez-Ortiz CJ; Hoshino H; Cheng D; Liu-Yescevitz L; Blurton-Jones M; Wolozin B; LaFerla FM; Kitazawa M
    Am J Pathol; 2013 Aug; 183(2):504-15. PubMed ID: 23747512
    [TBL] [Abstract][Full Text] [Related]  

  • 40. CRISPR/Cas9-Mediated Constitutive Loss of VCP (Valosin-Containing Protein) Impairs Proteostasis and Leads to Defective Striated Muscle Structure and Function In Vivo.
    Voisard P; Diofano F; Glazier AA; Rottbauer W; Just S
    Int J Mol Sci; 2022 Jun; 23(12):. PubMed ID: 35743185
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 47.