These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 237915)

  • 1. Intermediates and enzymes between alpha-ketoarginine and gamma-guanidinobutyrate in the L-arginine catabolic pathway of Pseudomonas putida.
    Vanderbilt AS; Gaby NS; Rodwell VW
    J Biol Chem; 1975 Jul; 250(14):5322-9. PubMed ID: 237915
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physiological consequences of starvation in Pseudomonas putida: degradation of intracellular protein and loss of activity of the inducible enzymes of L-arginine catabolism.
    Fan CL; Rodwell VW
    J Bacteriol; 1975 Dec; 124(3):1302-11. PubMed ID: 1194237
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolism of basic amino acids in Pseudomonas putida. Intermediates in L-arginine catabolism.
    Miller DL; Rodwell VW
    J Biol Chem; 1971 Aug; 246(16):5053-8. PubMed ID: 5570437
    [No Abstract]   [Full Text] [Related]  

  • 4. L-arginine utilization by Pseudomonas species.
    Stalon V; Mercenier A
    J Gen Microbiol; 1984 Jan; 130(1):69-76. PubMed ID: 6423769
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The fourth arginine catabolic pathway of Pseudomonas aeruginosa.
    Jann A; Matsumoto H; Haas D
    J Gen Microbiol; 1988 Apr; 134(4):1043-53. PubMed ID: 3141581
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The presence and the influence of germination on the gamma-aminobutyrate pathway in Lupinus albus seeds.
    Andrés I; González P; Santos-Ruiz A
    Physiol Chem Phys; 1973; 5(4):357-64. PubMed ID: 4148183
    [No Abstract]   [Full Text] [Related]  

  • 7. Functional genomics enables identification of genes of the arginine transaminase pathway in Pseudomonas aeruginosa.
    Yang Z; Lu CD
    J Bacteriol; 2007 Jun; 189(11):3945-53. PubMed ID: 17416670
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolism of basic amino acids in Pseudomonas putida. -guanidinobutyrate amidinohydrolase.
    Chou CS; Rodwell VW
    J Biol Chem; 1972 Jul; 247(14):4486-90. PubMed ID: 5043851
    [No Abstract]   [Full Text] [Related]  

  • 9. Purification and characterization of a new NAD(+)-dependent enzyme, L-tartrate decarboxylase, from Pseudomonas sp. group Ve-2.
    Furuyoshi S; Nawa Y; Kawabata N; Tanaka H; Soda K
    J Biochem; 1991 Oct; 110(4):520-5. PubMed ID: 1778975
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Occurrence of succinyl derivatives in the catabolism of arginine in Pseudomonas cepacia.
    Vander Wauven C; Stalon V
    J Bacteriol; 1985 Nov; 164(2):882-6. PubMed ID: 2865249
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catabolism of arginine, citrulline and ornithine by Pseudomonas and related bacteria.
    Stalon V; Vander Wauven C; Momin P; Legrain C
    J Gen Microbiol; 1987 Sep; 133(9):2487-95. PubMed ID: 3129535
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of catechol and the methylcatechols as inducers of aromatic metabolism in Pseudomonas putida.
    Murray K; Williams PA
    J Bacteriol; 1974 Mar; 117(3):1153-7. PubMed ID: 4813893
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Degradation of 2-ketoarginine by guanidinobutyrase in arginine aminotransferase pathway of Brevibacterium helvolum.
    Yorifuji T; Kaneoke M; Okazaki T; Shimizu E
    Biosci Biotechnol Biochem; 1995 Mar; 59(3):512-3. PubMed ID: 7766193
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relationships among enzymes of the beta-ketoadipate pathway. 3. Properties of crystalline gamma-carboxymuconolactone decarboxylase from Pseudomonas putida.
    Parke D; Meagher RB; Ornston LN
    Biochemistry; 1973 Aug; 12(18):3537-42. PubMed ID: 4199896
    [No Abstract]   [Full Text] [Related]  

  • 15. Effect of thiamine deprivation and thiamine antagonists on the level of gamma-aminobutyric acid and on 2-oxoglutarate metabolism in rat brain.
    Gubler CJ; Adams BL; Hammond B; Yuan EC; Guo SM; Bennion M
    J Neurochem; 1974 May; 22(5):831-6. PubMed ID: 4407102
    [No Abstract]   [Full Text] [Related]  

  • 16. Catabolism of L-arginine by Pseudomonas aeruginosa.
    Mercenier A; Simon JP; Haas D; Stalon V
    J Gen Microbiol; 1980 Feb; 116(2):381-9. PubMed ID: 6768836
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of arginine and pyrimidine biosynthesis in Pseudomonas putida.
    Condon S; Collins JK; O'donovan GA
    J Gen Microbiol; 1976 Feb; 92(2):375-83. PubMed ID: 176312
    [TBL] [Abstract][Full Text] [Related]  

  • 18. L-Arginine oxidase from Pseudomonas sp. TPU 7192: Characterization, gene cloning, heterologous expression, and application to L-arginine determination.
    Matsui D; Terai A; Asano Y
    Enzyme Microb Technol; 2016 Jan; 82():151-157. PubMed ID: 26672462
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arginine catabolism in the phototrophic bacterium Rhodobacter capsulatus E1F1. Purification and properties of arginase.
    Moreno-Vivián C; Soler G; Castillo F
    Eur J Biochem; 1992 Mar; 204(2):531-7. PubMed ID: 1541268
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inducible uptake system for -carboxy-cis, cis-muconate in a permeability mutant of Pseudomonas putida.
    Meagher RB; McCorkle GM; Ornston MK; Ornston LN
    J Bacteriol; 1972 Aug; 111(2):465-73. PubMed ID: 5053469
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.