BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 237916)

  • 1. Synthesis of adenosine triphosphate by an artificially imposed electrochemical proton gradient in bovine heart submitochondrial particles.
    Thayer WS; Hinkle PC
    J Biol Chem; 1975 Jul; 250(14):5330-5. PubMed ID: 237916
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetics of adenosine triphosphate synthesis in bovine heart submitochondrial particles.
    Thayer WS; Hinkle PC
    J Biol Chem; 1975 Jul; 250(14):5336. PubMed ID: 167010
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A study on the mechanism of energy coupling in the redox chain. 2. ATP-supported generation of membrane potential in the respiratory chain-deficient submitochondrial particles.
    Jasaitis AA; Severina II; Skulachev VP; Smirnova SM
    J Bioenerg; 1972 Aug; 3(5):387-97. PubMed ID: 4266293
    [No Abstract]   [Full Text] [Related]  

  • 4. Energy-linked ion translocation in submitochondrial particles. 3. Transport of monovalent cations by submitochondrial particles.
    Cockrell RS
    J Biol Chem; 1973 Oct; 248(19):6828-33. PubMed ID: 4795660
    [No Abstract]   [Full Text] [Related]  

  • 5. Dependency of the ATPase and 32 P--ATP exchange reaction of mitochondria on K + and electron transport.
    Gómez-Puyou A; Sandoval F; Chávez E; Freites D; De Gómez-Puyou MT
    Arch Biochem Biophys; 1972 Nov; 153(1):215-25. PubMed ID: 4265454
    [No Abstract]   [Full Text] [Related]  

  • 6. Adenosine triphosphate synthesis by electrochemical proton gradient in vesicles reconstituted from purified adenosine triphosphatase and phospholipids of thermophilic bacterium.
    Sone N; Yoshida M; Hirata H; Kagawa Y
    J Biol Chem; 1977 May; 252(9):2956-60. PubMed ID: 16011
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrolysis and synthesis of ATP by membrane-bound ATPase from a motile Streptococcus.
    van der Drift C; Janssen DB; van Wezenbeek PM
    Arch Microbiol; 1978 Oct; 119(1):31-6. PubMed ID: 31147
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Restoration of Pi-ATP exchange in the oligomycin-sensitive ATPase: effect of a coupling factor.
    Joshi S; Shaikh F; Sanadi DR
    Biochem Biophys Res Commun; 1975 Aug; 65(4):1371-7. PubMed ID: 150273
    [No Abstract]   [Full Text] [Related]  

  • 9. Adenosine triphosphate synthesis coupled to K+ influx in mitochondria.
    Kinnally KW; Tedeschi H
    Science; 1982 May; 216(4547):742-4. PubMed ID: 6281882
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrogenic proton translocation coupled to ATP hydrolysis by the plasma membrane Mg2+-dependent ATPase of yeast in reconstituted proteoliposomes.
    Villalobo A; Boutry M; Goffeau A
    J Biol Chem; 1981 Dec; 256(23):12081-7. PubMed ID: 6117557
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitochondrial ATP-Pi exchange complex and the site of uncoupling of oxidative phosphorylation.
    Hatefi Y; Hanstein WG; Galante Y; Stiggall DL
    Fed Proc; 1975 Jul; 34(8):1699-706. PubMed ID: 1093889
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adenosine 5'-triphosphate synthesis driven by a protonmotive force in membrane vesicles of Escherichia coli.
    Tsuchiya T
    J Bacteriol; 1977 Feb; 129(2):763-9. PubMed ID: 14110
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energy-linked transhydrogenase. Effects of valinomycin and nigericin on the ATP-driven transhydrogenase reaction catalyzed by reconstituted transhydrogenase-ATPase vesicles.
    Eytan GD; Carlenor E; Rydström J
    J Biol Chem; 1990 Aug; 265(22):12949-54. PubMed ID: 2142942
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of thenoyltrifluoroacetone on the interaction of succinate dehydrogenase and cytochrome b in ubiquinone-depleted submitochondrial particles.
    Nelson BD; Norling B; Persson B; Ernster L
    Biochem Biophys Res Commun; 1971 Sep; 44(6):1312-20. PubMed ID: 5160697
    [No Abstract]   [Full Text] [Related]  

  • 15. Stoichiometry of adenosine triphosphate-driven proton translocation in bovine heart submitochondrial particles.
    Thayer WS; Hinkle PC
    J Biol Chem; 1973 Aug; 248(15):5395-402. PubMed ID: 4358615
    [No Abstract]   [Full Text] [Related]  

  • 16. Current-voltage relationships for proton flow through the F0 sector of the ATP-synthase, carbonylcyanide-p-trifluoromethoxyphenylhydrazone or leak pathways in submitochondrial particles.
    Seren S; Caporin G; Galiazzo F; Lippe G; Ferguson SJ; Sorgato MC
    Eur J Biochem; 1985 Oct; 152(2):373-9. PubMed ID: 2865136
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energy-driven aspartate efflux from heart and liver mitochondria.
    LaNoue KF; Bryla J; Bassett DJ
    J Biol Chem; 1974 Dec; 249(23):7514-21. PubMed ID: 4436322
    [No Abstract]   [Full Text] [Related]  

  • 18. Thermodynamics of the electrochemical proton gradient in bovine heart submitochondrial particles.
    Bashford CL; Thayer WS
    J Biol Chem; 1977 Dec; 252(23):8459-63. PubMed ID: 21873
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of succinate, malonate and fumarate on the phosphorylating system of the submitochondrial particles.
    Kupriyanov VV; Saks VA
    FEBS Lett; 1972 Jul; 24(1):131-3. PubMed ID: 4263927
    [No Abstract]   [Full Text] [Related]  

  • 20. A transmembrane electrical potential generated by respiration is not equivalent to a diffusion potential of the same magnitude for ATP synthesis by Bacillus firmus RAB.
    Guffanti AA; Fuchs RT; Schneier M; Chiu E; Krulwich TA
    J Biol Chem; 1984 Mar; 259(5):2971-5. PubMed ID: 6699003
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.