These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 23791800)

  • 21. Disulfide Bonds of Proteins Displayed on Spores of Bacillus subtilis Can Occur Spontaneously.
    Richter A; Kim W; Kim JH; Schumann W
    Curr Microbiol; 2015 Jul; 71(1):156-61. PubMed ID: 26024714
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Gene cloning and characterization of a xylanase from a newly isolated Bacillus subtilis strain R5.
    Jalal A; Rashid N; Rasool N; Akhtar M
    J Biosci Bioeng; 2009 Apr; 107(4):360-5. PubMed ID: 19332293
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Distinctive genetic features exhibited by the Y-family DNA polymerases in Bacillus subtilis.
    Duigou S; Ehrlich SD; Noirot P; Noirot-Gros MF
    Mol Microbiol; 2004 Oct; 54(2):439-51. PubMed ID: 15469515
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Computational design-based molecular engineering of the glycosyl hydrolase family 11 B. subtilis XynA endoxylanase improves its acid stability.
    Beliën T; Joye IJ; Delcour JA; Courtin CM
    Protein Eng Des Sel; 2009 Oct; 22(10):587-96. PubMed ID: 19531602
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Modulation of thiol-disulfide oxidoreductases for increased production of disulfide-bond-containing proteins in Bacillus subtilis.
    Kouwen TR; Dubois JY; Freudl R; Quax WJ; van Dijl JM
    Appl Environ Microbiol; 2008 Dec; 74(24):7536-45. PubMed ID: 18952880
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Formation of active inclusion bodies in the periplasm of Escherichia coli.
    Arié JP; Miot M; Sassoon N; Betton JM
    Mol Microbiol; 2006 Oct; 62(2):427-37. PubMed ID: 17020581
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bacillus subtilis AprX involved in degradation of a heterologous protein during the late stationary growth phase.
    Kodama T; Endo K; Sawada K; Ara K; Ozaki K; Kakeshita H; Yamane K; Sekiguchi J
    J Biosci Bioeng; 2007 Aug; 104(2):135-43. PubMed ID: 17884659
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Signal sequence and alanine-rich region of streptococcal protein antigen A of Streptococcus sobrinus can direct localization of alkaline phosphatase to the periplasm of Escherichia coli.
    Holt RG; Raju L
    FEMS Microbiol Lett; 2000 Mar; 184(1):17-21. PubMed ID: 10689159
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The overexpression of the SAPB of Bacillus pumilus CBS and mutated sapB-L31I/T33S/N99Y alkaline proteases in Bacillus subtilis DB430: new attractive properties for the mutant enzyme.
    Jaouadi NZ; Jaouadi B; Aghajari N; Bejar S
    Bioresour Technol; 2012 Feb; 105():142-51. PubMed ID: 22178490
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Phosphatase activity of Bacillus subtilis IMV B-7023].
    Bulavenko LV; Kurdysh IK
    Mikrobiol Z; 2005; 67(4):21-7. PubMed ID: 16250232
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Efficient secretory expression of an alkaline pectate lyase gene from Bacillus subtilis in E. coli and the purification and characterization of the protein.
    Zhuge B; Du GC; Shen W; Zhuge J; Chen J
    Biotechnol Lett; 2007 Mar; 29(3):405-10. PubMed ID: 17237974
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Efficient secretory production of alkaline phosphatase by high cell density culture of recombinant Escherichia coli using the Bacillus sp. endoxylanase signal sequence.
    Choi JH; Jeong KJ; Kim SC; Lee SY
    Appl Microbiol Biotechnol; 2000 Jun; 53(6):640-5. PubMed ID: 10919319
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A novel method for high-level production of psychrophilic TAB5 alkaline phosphatase.
    Lu Z; Chen W; Liu R; Hu X; Ding Y
    Protein Expr Purif; 2010 Dec; 74(2):217-22. PubMed ID: 20600939
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cloning, expression, and characterization of L-asparaginase from a newly isolated Bacillus subtilis B11-06.
    Jia M; Xu M; He B; Rao Z
    J Agric Food Chem; 2013 Oct; 61(39):9428-34. PubMed ID: 24003863
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Growth inhibition of Escherichia coli during heterologous expression of Bacillus subtilis glutamyl-tRNA synthetase that catalyzes the formation of mischarged glutamyl-tRNA1 Gln.
    Baick JW; Yoon JH; Namgoong S; Söll D; Kim SI; Eom SH; Hong KW
    J Microbiol; 2004 Jun; 42(2):111-6. PubMed ID: 15357304
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Production, secretion, and stability of human secreted alkaline phosphatase in tobacco NT1 cell suspension cultures.
    Becerra-Arteaga A; Mason HS; Shuler ML
    Biotechnol Prog; 2006; 22(6):1643-9. PubMed ID: 17137313
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cloning, expression and characterization of a novel salt-tolerant xylanase from Bacillus sp. SN5.
    Bai W; Xue Y; Zhou C; Ma Y
    Biotechnol Lett; 2012 Nov; 34(11):2093-9. PubMed ID: 22864505
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High-level overproduction of Thermus enzymes in Streptomyces lividans.
    Díaz M; Ferreras E; Moreno R; Yepes A; Berenguer J; Santamaría R
    Appl Microbiol Biotechnol; 2008 Jul; 79(6):1001-8. PubMed ID: 18461317
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identification of the gene for the monomeric alkaline phosphatase of Vibrio cholerae serogroup O1 strain.
    Majumdar A; Ghatak A; Ghosh RK
    Gene; 2005 Jan; 344():251-8. PubMed ID: 15656991
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Involvement of the YneS/YgiH and PlsX proteins in phospholipid biosynthesis in both Bacillus subtilis and Escherichia coli.
    Yoshimura M; Oshima T; Ogasawara N
    BMC Microbiol; 2007 Jul; 7():69. PubMed ID: 17645809
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.