These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 23791855)

  • 21. The role of organ level conditioning on the promotion of engineered heart valve tissue development in-vitro using mesenchymal stem cells.
    Ramaswamy S; Gottlieb D; Engelmayr GC; Aikawa E; Schmidt DE; Gaitan-Leon DM; Sales VL; Mayer JE; Sacks MS
    Biomaterials; 2010 Feb; 31(6):1114-25. PubMed ID: 19944458
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Autologous human tissue-engineered heart valves: prospects for systemic application.
    Mol A; Rutten MC; Driessen NJ; Bouten CV; Zünd G; Baaijens FP; Hoerstrup SP
    Circulation; 2006 Jul; 114(1 Suppl):I152-8. PubMed ID: 16820565
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Functional tissue-engineered valves from cell-remodeled fibrin with commissural alignment of cell-produced collagen.
    Robinson PS; Johnson SL; Evans MC; Barocas VH; Tranquillo RT
    Tissue Eng Part A; 2008 Jan; 14(1):83-95. PubMed ID: 18333807
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hypoxia induces near-native mechanical properties in engineered heart valve tissue.
    Balguid A; Mol A; van Vlimmeren MA; Baaijens FP; Bouten CV
    Circulation; 2009 Jan; 119(2):290-7. PubMed ID: 19118259
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cell sourcing and culture conditions for fibrin-based valve constructs.
    Williams C; Johnson SL; Robinson PS; Tranquillo RT
    Tissue Eng; 2006 Jun; 12(6):1489-502. PubMed ID: 16846346
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tissue-engineered valves with commissural alignment.
    Neidert MR; Tranquillo RT
    Tissue Eng; 2006 Apr; 12(4):891-903. PubMed ID: 16674301
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A "sweet-spot" for fluid-induced oscillations in the conditioning of stem cell-based engineered heart valve tissues.
    Williams A; Nasim S; Salinas M; Moshkforoush A; Tsoukias N; Ramaswamy S
    J Biomech; 2017 Dec; 65():40-48. PubMed ID: 29054608
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cryopreserved amniotic fluid-derived cells: a lifelong autologous fetal stem cell source for heart valve tissue engineering.
    Schmidt D; Achermann J; Odermatt B; Genoni M; Zund G; Hoerstrup SP
    J Heart Valve Dis; 2008 Jul; 17(4):446-55; discussion 455. PubMed ID: 18751475
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Minimally-invasive implantation of living tissue engineered heart valves: a comprehensive approach from autologous vascular cells to stem cells.
    Schmidt D; Dijkman PE; Driessen-Mol A; Stenger R; Mariani C; Puolakka A; Rissanen M; Deichmann T; Odermatt B; Weber B; Emmert MY; Zund G; Baaijens FP; Hoerstrup SP
    J Am Coll Cardiol; 2010 Aug; 56(6):510-20. PubMed ID: 20670763
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tissue engineering of cardiac valve prostheses I: development and histological characterization of an acellular porcine scaffold.
    Booth C; Korossis SA; Wilcox HE; Watterson KG; Kearney JN; Fisher J; Ingham E
    J Heart Valve Dis; 2002 Jul; 11(4):457-62. PubMed ID: 12150290
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Development of an in vivo tissue-engineered, autologous heart valve (the biovalve): preparation of a prototype model.
    Hayashida K; Kanda K; Yaku H; Ando J; Nakayama Y
    J Thorac Cardiovasc Surg; 2007 Jul; 134(1):152-9. PubMed ID: 17599501
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Heart valve tissue engineering.
    Vesely I
    Circ Res; 2005 Oct; 97(8):743-55. PubMed ID: 16224074
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biomechanical properties of native and tissue engineered heart valve constructs.
    Hasan A; Ragaert K; Swieszkowski W; Selimović S; Paul A; Camci-Unal G; Mofrad MR; Khademhosseini A
    J Biomech; 2014 Jun; 47(9):1949-63. PubMed ID: 24290137
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The effect of glycosaminoglycan stabilization on tissue buckling in bioprosthetic heart valves.
    Shah SR; Vyavahare NR
    Biomaterials; 2008 Apr; 29(11):1645-53. PubMed ID: 18199477
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Tissue engineering of human heart valve leaflets: a novel bioreactor for a strain-based conditioning approach.
    Mol A; Driessen NJ; Rutten MC; Hoerstrup SP; Bouten CV; Baaijens FP
    Ann Biomed Eng; 2005 Dec; 33(12):1778-88. PubMed ID: 16389526
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Tissue-Engineered Fibrin-Based Heart Valve with Bio-Inspired Textile Reinforcement.
    Moreira R; Neusser C; Kruse M; Mulderrig S; Wolf F; Spillner J; Schmitz-Rode T; Jockenhoevel S; Mela P
    Adv Healthc Mater; 2016 Aug; 5(16):2113-21. PubMed ID: 27377438
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Stability and function of glycosaminoglycans in porcine bioprosthetic heart valves.
    Lovekamp JJ; Simionescu DT; Mercuri JJ; Zubiate B; Sacks MS; Vyavahare NR
    Biomaterials; 2006 Mar; 27(8):1507-18. PubMed ID: 16144707
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bioengineering challenges for heart valve tissue engineering.
    Sacks MS; Schoen FJ; Mayer JE
    Annu Rev Biomed Eng; 2009; 11():289-313. PubMed ID: 19413511
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Decellularized tissue-engineered heart valve leaflets with recellularization potential.
    Syedain ZH; Bradee AR; Kren S; Taylor DA; Tranquillo RT
    Tissue Eng Part A; 2013 Mar; 19(5-6):759-69. PubMed ID: 23088577
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fabrication of a novel hybrid heart valve leaflet for tissue engineering: an in vitro study.
    Hong H; Dong N; Shi J; Chen S; Guo C; Hu P; Qi H
    Artif Organs; 2009 Jul; 33(7):554-8. PubMed ID: 19566733
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.