These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
379 related articles for article (PubMed ID: 23792210)
1. Biochemical DSB-repair model for mammalian cells in G1 and early S phases of the cell cycle. Taleei R; Nikjoo H Mutat Res; 2013 Aug; 756(1-2):206-12. PubMed ID: 23792210 [TBL] [Abstract][Full Text] [Related]
2. DSB repair model for mammalian cells in early S and G1 phases of the cell cycle: application to damage induced by ionizing radiation of different quality. Taleei R; Girard PM; Nikjoo H Mutat Res Genet Toxicol Environ Mutagen; 2015 Feb; 779():5-14. PubMed ID: 25813721 [TBL] [Abstract][Full Text] [Related]
3. The role of nonhomologous DNA end joining, conservative homologous recombination, and single-strand annealing in the cell cycle-dependent repair of DNA double-strand breaks induced by H(2)O(2) in mammalian cells. Frankenberg-Schwager M; Becker M; Garg I; Pralle E; Wolf H; Frankenberg D Radiat Res; 2008 Dec; 170(6):784-93. PubMed ID: 19138034 [TBL] [Abstract][Full Text] [Related]
4. Response to the letter of Bodgi and Foray: on the coherence between mathematical models of DSB repair and physiological reality. Taleei R; Nikjoo H Mutat Res Genet Toxicol Environ Mutagen; 2014 Feb; 761():50-2. PubMed ID: 24440803 [No Abstract] [Full Text] [Related]
5. DNA end resection is needed for the repair of complex lesions in G1-phase human cells. Averbeck NB; Ringel O; Herrlitz M; Jakob B; Durante M; Taucher-Scholz G Cell Cycle; 2014; 13(16):2509-16. PubMed ID: 25486192 [TBL] [Abstract][Full Text] [Related]
6. Analysis of chromatid-break-repair detects a homologous recombination to non-homologous end-joining switch with increasing load of DNA double-strand breaks. Murmann-Konda T; Soni A; Stuschke M; Iliakis G Mutat Res Genet Toxicol Environ Mutagen; 2021 Jul; 867():503372. PubMed ID: 34266628 [TBL] [Abstract][Full Text] [Related]
7. On the coherence between mathematical models of DSB repair and physiological reality. Bodgi L; Foray N Mutat Res Genet Toxicol Environ Mutagen; 2014 Feb; 761():48-9. PubMed ID: 24440722 [No Abstract] [Full Text] [Related]
8. Cyclin-dependent kinase-dependent phosphorylation of Lif1 and Sae2 controls imprecise nonhomologous end joining accompanied by double-strand break resection. Matsuzaki K; Terasawa M; Iwasaki D; Higashide M; Shinohara M Genes Cells; 2012 Jun; 17(6):473-93. PubMed ID: 22563681 [TBL] [Abstract][Full Text] [Related]
9. Roles for 53BP1 in the repair of radiation-induced DNA double strand breaks. Shibata A; Jeggo PA DNA Repair (Amst); 2020 Sep; 93():102915. PubMed ID: 33087281 [TBL] [Abstract][Full Text] [Related]
10. The complexity of DNA double strand breaks is a critical factor enhancing end-resection. Yajima H; Fujisawa H; Nakajima NI; Hirakawa H; Jeggo PA; Okayasu R; Fujimori A DNA Repair (Amst); 2013 Nov; 12(11):936-46. PubMed ID: 24041488 [TBL] [Abstract][Full Text] [Related]
11. A Stochastic Model of DNA Double-Strand Breaks Repair Throughout the Cell Cycle. Mohseni-Salehi FS; Zare-Mirakabad F; Sadeghi M; Ghafouri-Fard S Bull Math Biol; 2020 Jan; 82(1):11. PubMed ID: 31933029 [TBL] [Abstract][Full Text] [Related]
13. PAXX and XLF DNA repair factors are functionally redundant in joining DNA breaks in a G1-arrested progenitor B-cell line. Kumar V; Alt FW; Frock RL Proc Natl Acad Sci U S A; 2016 Sep; 113(38):10619-24. PubMed ID: 27601633 [TBL] [Abstract][Full Text] [Related]
14. Inhibition of homologous recombination by hyperthermia shunts early double strand break repair to non-homologous end-joining. Bergs JW; Krawczyk PM; Borovski T; ten Cate R; Rodermond HM; Stap J; Medema JP; Haveman J; Essers J; van Bree C; Stalpers LJ; Kanaar R; Aten JA; Franken NA DNA Repair (Amst); 2013 Jan; 12(1):38-45. PubMed ID: 23237939 [TBL] [Abstract][Full Text] [Related]
15. MODELLING DSB REPAIR KINETICS FOR DNA DAMAGE INDUCED BY PROTON AND CARBON IONS. Taleei R Radiat Prot Dosimetry; 2019 May; 183(1-2):75-78. PubMed ID: 30668809 [TBL] [Abstract][Full Text] [Related]
16. Single-strand annealing, conservative homologous recombination, nonhomologous DNA end joining, and the cell cycle-dependent repair of DNA double-strand breaks induced by sparsely or densely ionizing radiation. Frankenberg-Schwager M; Gebauer A; Koppe C; Wolf H; Pralle E; Frankenberg D Radiat Res; 2009 Mar; 171(3):265-73. PubMed ID: 19267553 [TBL] [Abstract][Full Text] [Related]
17. The non-homologous end-joining (NHEJ) mathematical model for the repair of double-strand breaks: II. Application to damage induced by ultrasoft X rays and low-energy electrons. Taleei R; Girard PM; Sankaranarayanan K; Nikjoo H Radiat Res; 2013 May; 179(5):540-8. PubMed ID: 23560631 [TBL] [Abstract][Full Text] [Related]
18. Age-associated deficient recruitment of 53BP1 in G1 cells directs DNA double-strand break repair to BRCA1/CtIP-mediated DNA-end resection. Anglada T; Genescà A; Martín M Aging (Albany NY); 2020 Dec; 12(24):24872-24893. PubMed ID: 33361520 [TBL] [Abstract][Full Text] [Related]
19. Ionizing radiation and genetic risks. XVII. Formation mechanisms underlying naturally occurring DNA deletions in the human genome and their potential relevance for bridging the gap between induced DNA double-strand breaks and deletions in irradiated germ cells. Sankaranarayanan K; Taleei R; Rahmanian S; Nikjoo H Mutat Res; 2013; 753(2):114-130. PubMed ID: 23948232 [TBL] [Abstract][Full Text] [Related]
20. Regulation of repair pathway choice at two-ended DNA double-strand breaks. Shibata A Mutat Res; 2017 Oct; 803-805():51-55. PubMed ID: 28781144 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]