BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 23792320)

  • 1. Unveiling the mode of action of antibacterial labdane diterpenes from Alpinia nigra (Gaertn.) B. L. Burtt seeds.
    Ghosh S; Indukuri K; Bondalapati S; Saikia AK; Rangan L
    Eur J Med Chem; 2013 Aug; 66():101-5. PubMed ID: 23792320
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular docking and inhibition kinetics of α-glucosidase activity by labdane diterpenes isolated from tora seeds (Alpinia nigra B.L. Burtt.).
    Ghosh S; Rangan L
    Appl Biochem Biotechnol; 2015 Feb; 175(3):1477-89. PubMed ID: 25410799
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pahangensin A and B, two new antibacterial diterpenes from the rhizomes of Alpinia pahangensis Ridley.
    Sivasothy Y; Ibrahim H; Paliany AS; Alias SA; Awang K
    Bioorg Med Chem Lett; 2013 Dec; 23(23):6280-5. PubMed ID: 24144849
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Therapeutic potential of labdane diterpene isolated from
    Chakrabartty I; Vijayasekhar A; Rangan L
    Nat Prod Res; 2021 Mar; 35(6):1000-1004. PubMed ID: 31135189
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Labdane-Type Diterpenes, Galangalditerpenes A-C, with Melanogenesis Inhibitory Activity from the Fruit of Alpinia galanga.
    Manse Y; Ninomiya K; Nishi R; Hashimoto Y; Chaipech S; Muraoka O; Morikawa T
    Molecules; 2017 Dec; 22(12):. PubMed ID: 29261124
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Labdane diterpenoid glycosides from Alpinia densespicata and their nitric oxide inhibitory activities in macrophages.
    Kuo YJ; Hsiao PC; Zhang LJ; Wu MD; Liang YH; Ho HO; Kuo YH
    J Nat Prod; 2009 Jun; 72(6):1097-101. PubMed ID: 19555124
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new bis-labdanic diterpene from the rhizomes of Alpinia pahangensis.
    Sivasothy Y; Ibrahim H; Paliany AS; Alias SA; Md Nor NR; Awang K
    Planta Med; 2013 Dec; 79(18):1775-80. PubMed ID: 24356874
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antifungal activity from Alpinia galanga and the competition for incorporation of unsaturated fatty acids in cell growth.
    Haraguchi H; Kuwata Y; Inada K; Shingu K; Miyahara K; Nagao M; Yagi A
    Planta Med; 1996 Aug; 62(4):308-13. PubMed ID: 8792660
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation and characterization of six labdane diterpenes and one pregnane steroid of Turraeanthus africanus.
    Chenda LBN; Kouam SF; Lamshöft M; Kusari S; Talontsi FM; Ngadjui BT; Spiteller M
    Phytochemistry; 2014 Jul; 103():137-144. PubMed ID: 24735827
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antimicrobial activity of clerodane diterpenoids from Polyalthia longifolia seeds.
    Marthanda Murthy M; Subramanyam M; Hima Bindu M; Annapurna J
    Fitoterapia; 2005 Jun; 76(3-4):336-9. PubMed ID: 15890465
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced Antibacterial Activity of Ent-Labdane Derivatives of Salvic Acid (7α-Hydroxy-8(17)-ent-Labden-15-Oic Acid): Effect of Lipophilicity and the Hydrogen Bonding Role in Bacterial Membrane Interaction.
    Echeverría J; Urzúa A; Sanhueza L; Wilkens M
    Molecules; 2017 Jun; 22(7):. PubMed ID: 28644410
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of 13-epi-sclareol on the bacterial respiratory chain.
    Tapia L; Torres J; Mendoza L; Urzúa A; Ferreira J; Pavani M; Wilkens M
    Planta Med; 2004 Nov; 70(11):1058-63. PubMed ID: 15549662
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new labdane diterpene from the rhizomes of Alpinia officinarum.
    Zou QY; Wu HF; Tang YL; Chen DZ
    Nat Prod Res; 2016; 30(1):1-6. PubMed ID: 26189919
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New Labdane Diterpenes and Their Glycoside Derivatives from the Roots of Isodon adenantha.
    Wu LB; Xiao CJ; Jiang X; Qiu L; Dong X; Jiang B
    Chem Biodivers; 2015 Aug; 12(8):1229-36. PubMed ID: 26265575
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of Three Labdane Diterpenes from Aframomum alboviolaceum.
    Marlier M; Guellec GL; Lognay G; Wathelet JP; Severin M
    Planta Med; 1993 Oct; 59(5):455-7. PubMed ID: 17236006
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ent-rosane and labdane diterpenoids from Sagittaria sagittifolia and their antibacterial activity against three oral pathogens.
    Liu XT; Pan Q; Shi Y; Williams ID; Sung HH; Zhang Q; Liang JY; Ip NY; Min ZD
    J Nat Prod; 2006 Feb; 69(2):255-60. PubMed ID: 16499326
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of the derivatives of andrographolide on the morphology of Bacillus subtilis.
    Aromdee C; Sriubolmas N; Wiyakrutta S; Suebsasna S; Khunkitti W
    Arch Pharm Res; 2011 Jan; 34(1):71-7. PubMed ID: 21468917
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antimicrobial principle from Aframomum longifolius.
    Tatsimo SJ; Tane P; Melissa J; Sondengam BL; Okunji CO; Schuster BM; Iwu MM; Khan IA
    Planta Med; 2006 Feb; 72(2):132-5. PubMed ID: 16491448
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Labdane-type diterpenes active against acne from pine cones (Pinus densiflora).
    Sultan MZ; Jeon YM; Moon SS
    Planta Med; 2008 Mar; 74(4):449-52. PubMed ID: 18484541
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antibacterial diterpenes from Plectranthus ernstii.
    Stavri M; Paton A; Skelton BW; Gibbons S
    J Nat Prod; 2009 Jun; 72(6):1191-4. PubMed ID: 19445517
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.