These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
104 related articles for article (PubMed ID: 23792554)
1. Interaction of preosteoblasts with surface-immobilized collagen-based nanotubes. Kalaskar DM; Demoustier-Champagne S; Dupont-Gillain CC Colloids Surf B Biointerfaces; 2013 Nov; 111():134-41. PubMed ID: 23792554 [TBL] [Abstract][Full Text] [Related]
2. Elaboration of nanostructured biointerfaces with tunable degree of coverage by protein nanotubes using electrophoretic deposition. Kalaskar DM; Poleunis C; Dupont-Gillain C; Demoustier-Champagne S Biomacromolecules; 2011 Nov; 12(11):4104-11. PubMed ID: 21939222 [TBL] [Abstract][Full Text] [Related]
3. Electrophoretically deposited polyaniline nanotubes based film for cholesterol detection. Dhand C; Solanki PR; Pandey MK; Datta M; Malhotra BD Electrophoresis; 2010 Nov; 31(22):3754-62. PubMed ID: 21077243 [TBL] [Abstract][Full Text] [Related]
4. Fabrication of selenium-deposited and chitosan-coated titania nanotubes with anticancer and antibacterial properties. Chen X; Cai K; Fang J; Lai M; Hou Y; Li J; Luo Z; Hu Y; Tang L Colloids Surf B Biointerfaces; 2013 Mar; 103():149-57. PubMed ID: 23201732 [TBL] [Abstract][Full Text] [Related]
5. Advantages of indium-tin oxide-coated glass slides in correlative scanning electron microscopy applications of uncoated cultured cells. Pluk H; Stokes DJ; Lich B; Wieringa B; Fransen J J Microsc; 2009 Mar; 233(3):353-63. PubMed ID: 19250456 [TBL] [Abstract][Full Text] [Related]
6. Conductive indium-tin oxide nanowire and nanotube arrays made by electrochemically assisted deposition in template membranes: switching between wire and tube growth modes by surface chemical modification of the template. Kovtyukhova NI; Mallouk TE Nanoscale; 2011 Apr; 3(4):1541-52. PubMed ID: 21279193 [TBL] [Abstract][Full Text] [Related]
7. Titania nanotubes dimensions-dependent protein adsorption and its effect on the growth of osteoblasts. Yang W; Xi X; Shen X; Liu P; Hu Y; Cai K J Biomed Mater Res A; 2014 Oct; 102(10):3598-608. PubMed ID: 24178590 [TBL] [Abstract][Full Text] [Related]
8. Cell biological responses of osteoblasts on anodized nanotubular surface of a titanium-zirconium alloy. Sista S; Nouri A; Li Y; Wen C; Hodgson PD; Pande G J Biomed Mater Res A; 2013 Dec; 101(12):3416-30. PubMed ID: 23559548 [TBL] [Abstract][Full Text] [Related]
9. TiO2 nanotubes on Ti: Influence of nanoscale morphology on bone cell-materials interaction. Das K; Bose S; Bandyopadhyay A J Biomed Mater Res A; 2009 Jul; 90(1):225-37. PubMed ID: 18496867 [TBL] [Abstract][Full Text] [Related]
10. Molecular plasma deposited peptides on anodized nanotubular titanium: an osteoblast density study. Balasundaram G; Shimpi TM; Sanow WR; Storey DM; Kitchell BS; Webster TJ J Biomed Mater Res A; 2011 Aug; 98(2):192-200. PubMed ID: 21548070 [TBL] [Abstract][Full Text] [Related]
11. An in vitro assessment of a cell-containing collagenous extracellular matrix-like scaffold for bone tissue engineering. Pedraza CE; Marelli B; Chicatun F; McKee MD; Nazhat SN Tissue Eng Part A; 2010 Mar; 16(3):781-93. PubMed ID: 19778181 [TBL] [Abstract][Full Text] [Related]
12. Understanding and controlling type I collagen adsorption and assembly at interfaces, and application to cell engineering. Dupont-Gillain CC Colloids Surf B Biointerfaces; 2014 Dec; 124():87-96. PubMed ID: 25245299 [TBL] [Abstract][Full Text] [Related]
13. The effect of anatase TiO2 nanotube layers on MC3T3-E1 preosteoblast adhesion, proliferation, and differentiation. Yu WQ; Jiang XQ; Zhang FQ; Xu L J Biomed Mater Res A; 2010 Sep; 94(4):1012-22. PubMed ID: 20694968 [TBL] [Abstract][Full Text] [Related]
14. Enhanced osteoblastic activity and bone regeneration using surface-modified porous bioactive glass scaffolds. San Miguel B; Kriauciunas R; Tosatti S; Ehrbar M; Ghayor C; Textor M; Weber FE J Biomed Mater Res A; 2010 Sep; 94(4):1023-33. PubMed ID: 20694969 [TBL] [Abstract][Full Text] [Related]
16. In vitro study of vancomycin release and osteoblast-like cell growth on structured calcium phosphate-collagen. Pon-On W; Charoenphandhu N; Teerapornpuntakit J; Thongbunchoo J; Krishnamra N; Tang IM Mater Sci Eng C Mater Biol Appl; 2013 Apr; 33(3):1423-31. PubMed ID: 23827591 [TBL] [Abstract][Full Text] [Related]
17. Effect of surface charge and electrode material on the size-dependent oxidation of surface-attached metal nanoparticles. Masitas RA; Khachian IV; Bill BL; Zamborini FP Langmuir; 2014 Nov; 30(43):13075-84. PubMed ID: 25260111 [TBL] [Abstract][Full Text] [Related]
18. Synthesis of collagen nanotubes with highly regular dimensions through membrane-templated layer-by-layer assembly. Landoulsi J; Roy CJ; Dupont-Gillain C; Demoustier-Champagne S Biomacromolecules; 2009 May; 10(5):1021-4. PubMed ID: 19371025 [TBL] [Abstract][Full Text] [Related]
19. Enzymatic glucose biosensor based on CeO2 nanorods synthesized by non-isothermal precipitation. Patil D; Dung NQ; Jung H; Ahn SY; Jang DM; Kim D Biosens Bioelectron; 2012 Jan; 31(1):176-81. PubMed ID: 22035972 [TBL] [Abstract][Full Text] [Related]
20. Cytocompatibility assessment of chemical surface treatments for phosphate glass to improve adhesion between glass and polyester. S Hasan M; Ahmed I; Parsons AJ; Walker GS; Scotchford CA J Biomed Mater Res A; 2013 Nov; 101(11):3301-10. PubMed ID: 23983190 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]