These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
104 related articles for article (PubMed ID: 23792554)
41. Surface modification of nanofibrous polycaprolactone/gelatin composite scaffold by collagen type I grafting for skin tissue engineering. Gautam S; Chou CF; Dinda AK; Potdar PD; Mishra NC Mater Sci Eng C Mater Biol Appl; 2014 Jan; 34():402-9. PubMed ID: 24268275 [TBL] [Abstract][Full Text] [Related]
42. The behavior of MC3T3-E1 cells on chitosan/poly-L-lysine composite films: effect of nanotopography, surface chemistry, and wettability. Zheng Z; Zhang L; Kong L; Wang A; Gong Y; Zhang X J Biomed Mater Res A; 2009 May; 89(2):453-65. PubMed ID: 18431777 [TBL] [Abstract][Full Text] [Related]
43. Influence of topography of nanofibrils of three-dimensional collagen gel beads on the phenotype, proliferation, and maturation of osteoblasts. Tsai SW; Chen CC; Chen PL; Hsu FY J Biomed Mater Res A; 2009 Dec; 91(4):985-93. PubMed ID: 19097153 [TBL] [Abstract][Full Text] [Related]
44. AFM, CLSM and EIS characterization of the immobilization of antibodies on indium-tin oxide electrode and their capture of Legionella pneumophila. Souiri M; Blel N; Sboui D; Mhamdi L; Epalle T; Mzoughi R; Riffard S; Othmane A Talanta; 2014 Jan; 118():224-30. PubMed ID: 24274292 [TBL] [Abstract][Full Text] [Related]
45. The role of substrates on the structural, optical, and morphological properties of ZnO nanotubes prepared by spray pyrolysis. Vijayalakshmi K; Karthick K Microsc Res Tech; 2014 Mar; 77(3):211-5. PubMed ID: 24375777 [TBL] [Abstract][Full Text] [Related]
46. Polarization-dependent scanning photoionization microscopy: ultrafast plasmon-mediated electron ejection dynamics in single Au nanorods. Schweikhard V; Grubisic A; Baker TA; Thomann I; Nesbitt DJ ACS Nano; 2011 May; 5(5):3724-35. PubMed ID: 21466166 [TBL] [Abstract][Full Text] [Related]
47. Helical rosette nanotubes: a biomimetic coating for orthopedics? Chun AL; Moralez JG; Webster TJ; Fenniri H Biomaterials; 2005 Dec; 26(35):7304-9. PubMed ID: 16023193 [TBL] [Abstract][Full Text] [Related]
48. Evaluation of nanostructural, mechanical, and biological properties of collagen-nanotube composites. Tan W; Twomey J; Guo D; Madhavan K; Li M IEEE Trans Nanobioscience; 2010 Jun; 9(2):111-20. PubMed ID: 20215088 [TBL] [Abstract][Full Text] [Related]
49. Surface modification of indium tin oxide via electrochemical reduction of aryldiazonium cations. Maldonado S; Smith TJ; Williams RD; Morin S; Barton E; Stevenson KJ Langmuir; 2006 Mar; 22(6):2884-91. PubMed ID: 16519499 [TBL] [Abstract][Full Text] [Related]
50. Indium tin oxide-coated glass modified with reduced graphene oxide sheets and gold nanoparticles as disposable working electrodes for dopamine sensing in meat samples. Yang J; Strickler JR; Gunasekaran S Nanoscale; 2012 Aug; 4(15):4594-602. PubMed ID: 22706569 [TBL] [Abstract][Full Text] [Related]
51. Effects of surface compression strengthening on properties of indium tin oxide films deposited on automobile glass. Huang D; Ho FC; Parsons RR Appl Opt; 1996 Sep; 35(25):5080-4. PubMed ID: 21102939 [TBL] [Abstract][Full Text] [Related]
52. Preparation of regularly structured nanotubular TiO2 thin films on ITO and their modification with thin ALD-grown layers. Tupala J; Kemell M; Härkönen E; Ritala M; Leskelä M Nanotechnology; 2012 Mar; 23(12):125707. PubMed ID: 22414989 [TBL] [Abstract][Full Text] [Related]
53. Improved bone-forming functionality on diameter-controlled TiO(2) nanotube surface. Brammer KS; Oh S; Cobb CJ; Bjursten LM; van der Heyde H; Jin S Acta Biomater; 2009 Oct; 5(8):3215-23. PubMed ID: 19447210 [TBL] [Abstract][Full Text] [Related]
54. Submicron bioactive glass tubes for bone tissue engineering. Xie J; Blough ER; Wang CH Acta Biomater; 2012 Feb; 8(2):811-9. PubMed ID: 21945829 [TBL] [Abstract][Full Text] [Related]
55. [Effect of diameter-controlled Ti-TiO2 nanotubes on the adhesion of osteoblast and fibroblast]. Li HC; Zhang YM; Sun HP Zhonghua Kou Qiang Yi Xue Za Zhi; 2012 Feb; 47(2):122-6. PubMed ID: 22490253 [TBL] [Abstract][Full Text] [Related]
56. Monitoring of dopamine release in single cell using ultrasensitive ITO microsensors modified with carbon nanotubes. Shi BX; Wang Y; Zhang K; Lam TL; Chan HL Biosens Bioelectron; 2011 Feb; 26(6):2917-21. PubMed ID: 21185713 [TBL] [Abstract][Full Text] [Related]
57. Responses of bone-forming cells on pre-immersed Zr-based bulk metallic glasses: Effects of composition and roughness. Huang L; Cao Z; Meyer HM; Liaw PK; Garlea E; Dunlap JR; Zhang T; He W Acta Biomater; 2011 Jan; 7(1):395-405. PubMed ID: 20709197 [TBL] [Abstract][Full Text] [Related]
58. Polysaccharide-protein surface modification of titanium via a layer-by-layer technique: characterization and cell behaviour aspects. Cai K; Rechtenbach A; Hao J; Bossert J; Jandt KD Biomaterials; 2005 Oct; 26(30):5960-71. PubMed ID: 15913761 [TBL] [Abstract][Full Text] [Related]
59. Electrically modulated attachment and detachment of animal cells cultured on an optically transparent patterning electrode. Koyama S J Biosci Bioeng; 2011 May; 111(5):574-83. PubMed ID: 21277827 [TBL] [Abstract][Full Text] [Related]
60. Dense passivating poly(ethylene glycol) films on indium tin oxide substrates. Schlapak R; Armitage D; Saucedo-Zeni N; Hohage M; Howorka S Langmuir; 2007 Sep; 23(20):10244-53. PubMed ID: 17715951 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]