These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 23792931)

  • 61. Mercury (Hg) emissions from domestic biomass combustion for space heating.
    Huang J; Hopke PK; Choi HD; Laing JR; Cui H; Zananski TJ; Chandrasekaran SR; Rattigan OV; Holsen TM
    Chemosphere; 2011 Sep; 84(11):1694-9. PubMed ID: 21620435
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Simultaneous removal of SO₂, NO and Hg⁰ through an integrative process utilizing a cost-effective complex oxidant.
    Zhao Y; Hao R; Yuan B; Jiang J
    J Hazard Mater; 2016 Jan; 301():74-83. PubMed ID: 26342578
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Simultaneous sampling and analysis for vapor mercury in ambient air using needle trap coupled with gas chromatography-mass spectrometry.
    Cai J; Ouyang G; Gong Y; Pawliszyn J
    J Chromatogr A; 2008 Dec; 1213(1):19-24. PubMed ID: 18829037
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Simultaneous removal of SO2 and NO by wet scrubbing using aqueous chlorine dioxide solution.
    Jin DS; Deshwal BR; Park YS; Lee HK
    J Hazard Mater; 2006 Jul; 135(1-3):412-7. PubMed ID: 16442222
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Sequence-specific Ni(II)-dependent peptide bond hydrolysis for protein engineering: reaction conditions and molecular mechanism.
    Kopera E; Krezel A; Protas AM; Belczyk A; Bonna A; Wysłouch-Cieszyńska A; Poznański J; Bal W
    Inorg Chem; 2010 Jul; 49(14):6636-45. PubMed ID: 20550138
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Simultaneous removal of multi-pollutants from flue gas by a vaporized composite absorbent.
    Zhao Y; Hao R; Xue F; Feng Y
    J Hazard Mater; 2017 Jan; 321():500-508. PubMed ID: 27669391
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Removing and recycling mercury from scrubbing solution produced in wet nonferrous metal smelting flue gas purification process.
    Yang S; Li Z; Yan K; Zhang X; Xu Z; Liu W; Liu Z; Liu H
    J Environ Sci (China); 2021 May; 103():59-68. PubMed ID: 33743919
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Empirical models for estimating mercury flux from soils.
    Lin CJ; Gustin MS; Singhasuk P; Eckley C; Miller M
    Environ Sci Technol; 2010 Nov; 44(22):8522-8. PubMed ID: 20964360
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Mercury removal from flue gas by a MoS
    Ma Y; Wang J; Zhang X; Gu W; Han L; Li Y
    Environ Sci Pollut Res Int; 2023 Mar; 30(11):29043-29051. PubMed ID: 36402882
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Experimental study on the absorption behaviors of gas phase bivalent mercury in Ca-based wet flue gas desulfurization slurry system.
    Wang Y; Liu Y; Wu Z; Mo J; Cheng B
    J Hazard Mater; 2010 Nov; 183(1-3):902-7. PubMed ID: 20739119
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Taguchi optimization approach for Pb(II) and Hg(II) removal from aqueous solutions using modified mesoporous carbon.
    Zolfaghari G; Esmaili-Sari A; Anbia M; Younesi H; Amirmahmoodi S; Ghafari-Nazari A
    J Hazard Mater; 2011 Sep; 192(3):1046-55. PubMed ID: 21733626
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Removal of Gaseous Elemental Mercury in a Diffusion Electrochemical Reactor Based on a Three-Dimensional Electrode.
    Yang J; Cao L; Wang Q; Zhou J; Shen Q; Yang J
    ACS Omega; 2020 Mar; 5(12):6903-6910. PubMed ID: 32258926
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Immobilization of aqueous Hg(II) by mackinawite (FeS).
    Liu J; Valsaraj KT; Devai I; DeLaune RD
    J Hazard Mater; 2008 Sep; 157(2-3):432-40. PubMed ID: 18280650
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Exchange pattern of gaseous elemental mercury in an active urban landfill facility.
    Nguyen HT; Kim KH; Kim MY; Shon ZH
    Chemosphere; 2008 Jan; 70(5):821-32. PubMed ID: 17720221
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Removal of mercury(II) from aqueous solution using moss (Drepanocladus revolvens) biomass: equilibrium, thermodynamic and kinetic studies.
    Sari A; Tuzen M
    J Hazard Mater; 2009 Nov; 171(1-3):500-7. PubMed ID: 19576694
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Removal of mercury from water by multi-walled carbon nanotubes.
    Tawabini B; Al-Khaldi S; Atieh M; Khaled M
    Water Sci Technol; 2010; 61(3):591-8. PubMed ID: 20150694
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Study of atmospheric mercury budget in East Asia using STEM-Hg modeling system.
    Pan L; Lin CJ; Carmichael GR; Streets DG; Tang Y; Woo JH; Shetty SK; Chu HW; Ho TC; Friedli HR; Feng X
    Sci Total Environ; 2010 Jul; 408(16):3277-91. PubMed ID: 20483447
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Litterfall mercury dry deposition in the eastern USA.
    Risch MR; Dewild JF; Krabbenhoft DP; Kolka RK; Zhang L
    Environ Pollut; 2012 Feb; 161():284-90. PubMed ID: 21715069
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Removal of mercury (II) from aqueous solution using papain immobilized on alginate bead: optimization of immobilization condition and modeling of removal study.
    Bhattacharyya A; Dutta S; De P; Ray P; Basu S
    Bioresour Technol; 2010 Dec; 101(24):9421-8. PubMed ID: 20696575
    [TBL] [Abstract][Full Text] [Related]  

  • 80. In situ optical absorption mercury continuous emission monitor.
    Thiebaud J; Thomson MJ; Mani R; Morrow WH; Morris EA; Jia CQ
    Environ Sci Technol; 2009 Dec; 43(24):9294-9. PubMed ID: 19924898
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.