These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 23792933)

  • 21. Spontaneous activation of [FeFe]-hydrogenases by an inorganic [2Fe] active site mimic.
    Esselborn J; Lambertz C; Adamska-Venkates A; Simmons T; Berggren G; Noth J; Siebel J; Hemschemeier A; Artero V; Reijerse E; Fontecave M; Lubitz W; Happe T
    Nat Chem Biol; 2013 Oct; 9(10):607-609. PubMed ID: 23934246
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Approaches to developing biological H(2)-photoproducing organisms and processes.
    Ghirardi ML; King PW; Posewitz MC; Maness PC; Fedorov A; Kim K; Cohen J; Schulten K; Seibert M
    Biochem Soc Trans; 2005 Feb; 33(Pt 1):70-2. PubMed ID: 15667268
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structure/function relationships of [NiFe]- and [FeFe]-hydrogenases.
    Fontecilla-Camps JC; Volbeda A; Cavazza C; Nicolet Y
    Chem Rev; 2007 Oct; 107(10):4273-303. PubMed ID: 17850165
    [No Abstract]   [Full Text] [Related]  

  • 24. Analysis of [FeFe]-hydrogenase genes for the elucidation of a hydrogen-producing bacterial community in paddy field soil.
    Baba R; Kimura M; Asakawa S; Watanabe T
    FEMS Microbiol Lett; 2014 Jan; 350(2):249-56. PubMed ID: 24261851
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Branched polyethylenimine improves hydrogen photoproduction from a CdSe quantum dot/[FeFe]-hydrogenase mimic system in neutral aqueous solutions.
    Liang WJ; Wang F; Wen M; Jian JX; Wang XZ; Chen B; Tung CH; Wu LZ
    Chemistry; 2015 Feb; 21(8):3187-92. PubMed ID: 25572459
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Photoelectrochemical hydrogen generation by an [FeFe] hydrogenase active site mimic at a p-type silicon/molecular electrocatalyst junction.
    Kumar B; Beyler M; Kubiak CP; Ott S
    Chemistry; 2012 Jan; 18(5):1295-8. PubMed ID: 22223148
    [No Abstract]   [Full Text] [Related]  

  • 27. H2 binding and splitting on a new-generation [FeFe]-hydrogenase model featuring a redox-active decamethylferrocenyl phosphine ligand: a theoretical investigation.
    Greco C
    Inorg Chem; 2013 Feb; 52(4):1901-8. PubMed ID: 23374093
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Exceptional poly(acrylic acid)-based artificial [FeFe]-hydrogenases for photocatalytic H2 production in water.
    Wang F; Liang WJ; Jian JX; Li CB; Chen B; Tung CH; Wu LZ
    Angew Chem Int Ed Engl; 2013 Jul; 52(31):8134-8. PubMed ID: 23788433
    [No Abstract]   [Full Text] [Related]  

  • 29. [FeFe]-Hydrogenases: recent developments and future perspectives.
    Wittkamp F; Senger M; Stripp ST; Apfel UP
    Chem Commun (Camb); 2018 Jun; 54(47):5934-5942. PubMed ID: 29726568
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Caught in the H
    Rodríguez-Maciá P; Galle LM; Bjornsson R; Lorent C; Zebger I; Yoda Y; Cramer SP; DeBeer S; Span I; Birrell JA
    Angew Chem Int Ed Engl; 2020 Sep; 59(38):16786-16794. PubMed ID: 32488975
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electron transfer kinetics in CdS nanorod-[FeFe]-hydrogenase complexes and implications for photochemical H₂ generation.
    Wilker MB; Shinopoulos KE; Brown KA; Mulder DW; King PW; Dukovic G
    J Am Chem Soc; 2014 Mar; 136(11):4316-24. PubMed ID: 24564271
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The hows and whys of aerobic H2 metabolism.
    Parkin A; Sargent F
    Curr Opin Chem Biol; 2012 Apr; 16(1-2):26-34. PubMed ID: 22366384
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Proton transport in Clostridium pasteurianum [FeFe] hydrogenase I: a computational study.
    Long H; King PW; Chang CH
    J Phys Chem B; 2014 Jan; 118(4):890-900. PubMed ID: 24405487
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Lyophilization protects [FeFe]-hydrogenases against O2-induced H-cluster degradation.
    Noth J; Kositzki R; Klein K; Winkler M; Haumann M; Happe T
    Sci Rep; 2015 Sep; 5():13978. PubMed ID: 26364994
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Thermodynamic Hydricity of [FeFe]-Hydrogenases.
    Wiedner ES
    J Am Chem Soc; 2019 May; 141(18):7212-7222. PubMed ID: 31012307
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electrocatalytic dihydrogen evolution mechanism of [Fe2(CO)4(kappa(2)-Ph2PCH2CH2PPh2)(mu-S(CH2)3S)] and related models of the [FeFe]-hydrogenases active site: a DFT investigation.
    Greco C; Fantucci P; De Gioia L; Suarez-Bertoa R; Bruschi M; Talarmin J; Schollhammer P
    Dalton Trans; 2010 Aug; 39(31):7320-9. PubMed ID: 20593098
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evolution in the understanding of [Fe]-hydrogenase.
    Corr MJ; Murphy JA
    Chem Soc Rev; 2011 May; 40(5):2279-92. PubMed ID: 21365080
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Photocatalytic hydrogen evolution by [FeFe] hydrogenase mimics in homogeneous solution.
    Wang WG; Wang F; Wang HY; Si G; Tung CH; Wu LZ
    Chem Asian J; 2010 Aug; 5(8):1796-803. PubMed ID: 20544787
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Accumulating the hydride state in the catalytic cycle of [FeFe]-hydrogenases.
    Winkler M; Senger M; Duan J; Esselborn J; Wittkamp F; Hofmann E; Apfel UP; Stripp ST; Happe T
    Nat Commun; 2017 Jul; 8():16115. PubMed ID: 28722011
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Application of gene-shuffling for the rapid generation of novel [FeFe]-hydrogenase libraries.
    Nagy LE; Meuser JE; Plummer S; Seibert M; Ghirardi ML; King PW; Ahmann D; Posewitz MC
    Biotechnol Lett; 2007 Mar; 29(3):421-30. PubMed ID: 17195059
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.