These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 23792962)
41. Structure and mechanism of Pseudomonas aeruginosa PhzD, an isochorismatase from the phenazine biosynthetic pathway. Parsons JF; Calabrese K; Eisenstein E; Ladner JE Biochemistry; 2003 May; 42(19):5684-93. PubMed ID: 12741825 [TBL] [Abstract][Full Text] [Related]
42. WaaL of Pseudomonas aeruginosa utilizes ATP in in vitro ligation of O antigen onto lipid A-core. Abeyrathne PD; Lam JS Mol Microbiol; 2007 Sep; 65(5):1345-59. PubMed ID: 17697256 [TBL] [Abstract][Full Text] [Related]
43. NudC Nudix hydrolase from Pseudomonas syringae, but not its counterpart from Pseudomonas aeruginosa, is a novel regulator of intracellular redox balance required for growth, motility and biofilm formation. Modzelan M; Kujawa M; Głąbski K; Jagura-Burdzy G; Kraszewska E Mol Microbiol; 2014 Sep; 93(5):867-82. PubMed ID: 24989777 [TBL] [Abstract][Full Text] [Related]
44. Profiling and tandem mass spectrometry analysis of aminoacylated phospholipids in Bacillus subtilis . Atila M; Luo Y F1000Res; 2016; 5():121. PubMed ID: 26998233 [TBL] [Abstract][Full Text] [Related]
45. Hydroxy-fatty acid production in a Pseudomonas aeruginosa 42A2 PHA synthase mutant generated by directed mutagenesis. Torrego-Solana N; Martin-Arjol I; Bassas-Galia M; Diaz P; Manresa A Appl Microbiol Biotechnol; 2012 Mar; 93(6):2551-61. PubMed ID: 22083273 [TBL] [Abstract][Full Text] [Related]
46. PilO of Pseudomonas aeruginosa 1244: subcellular location and domain assignment. Qutyan M; Paliotti M; Castric P Mol Microbiol; 2007 Dec; 66(6):1444-58. PubMed ID: 18005110 [TBL] [Abstract][Full Text] [Related]
47. LysX2 is a Mycobacterium tuberculosis membrane protein with an extracytoplasmic MprF-like domain. Boldrin F; Cioetto Mazzabò L; Lanéelle MA; Rindi L; Segafreddo G; Lemassu A; Etienne G; Conflitti M; Daffé M; Garzino Demo A; Manganelli R; Marrakchi H; Provvedi R BMC Microbiol; 2022 Apr; 22(1):85. PubMed ID: 35365094 [TBL] [Abstract][Full Text] [Related]
48. Integration host factor and sequences downstream of the Pseudomonas aeruginosa algD transcription start site are required for expression. Wozniak DJ J Bacteriol; 1994 Aug; 176(16):5068-76. PubMed ID: 8051019 [TBL] [Abstract][Full Text] [Related]
49. Anaerobic control of denitrification in Pseudomonas stutzeri escapes mutagenesis of an fnr-like gene. Cuypers H; Zumft WG J Bacteriol; 1993 Nov; 175(22):7236-46. PubMed ID: 8226670 [TBL] [Abstract][Full Text] [Related]
50. Exoenzyme S of Pseudomonas aeruginosa is secreted by a type III pathway. Yahr TL; Goranson J; Frank DW Mol Microbiol; 1996 Dec; 22(5):991-1003. PubMed ID: 8971719 [TBL] [Abstract][Full Text] [Related]
51. Cloning and nucleotide sequence of the pvdA gene encoding the pyoverdin biosynthetic enzyme L-ornithine N5-oxygenase in Pseudomonas aeruginosa. Visca P; Ciervo A; Orsi N J Bacteriol; 1994 Feb; 176(4):1128-40. PubMed ID: 8106324 [TBL] [Abstract][Full Text] [Related]
52. Characterization of a five-gene cluster required for the biogenesis of type 4 fimbriae in Pseudomonas aeruginosa. Martin PR; Watson AA; McCaul TF; Mattick JS Mol Microbiol; 1995 May; 16(3):497-508. PubMed ID: 7565110 [TBL] [Abstract][Full Text] [Related]
53. Insights into the mechanism of catalysis by the P-C bond-cleaving enzyme phosphonoacetaldehyde hydrolase derived from gene sequence analysis and mutagenesis. Baker AS; Ciocci MJ; Metcalf WW; Kim J; Babbitt PC; Wanner BL; Martin BM; Dunaway-Mariano D Biochemistry; 1998 Jun; 37(26):9305-15. PubMed ID: 9649311 [TBL] [Abstract][Full Text] [Related]
54. PelA and PelB proteins form a modification and secretion complex essential for Pel polysaccharide-dependent biofilm formation in Marmont LS; Whitfield GB; Rich JD; Yip P; Giesbrecht LB; Stremick CA; Whitney JC; Parsek MR; Harrison JJ; Howell PL J Biol Chem; 2017 Nov; 292(47):19411-19422. PubMed ID: 28972168 [TBL] [Abstract][Full Text] [Related]
55. Compensatory periplasmic nitrate reductase activity supports anaerobic growth of Pseudomonas aeruginosa PAO1 in the absence of membrane nitrate reductase. Van Alst NE; Sherrill LA; Iglewski BH; Haidaris CG Can J Microbiol; 2009 Oct; 55(10):1133-44. PubMed ID: 19935885 [TBL] [Abstract][Full Text] [Related]
56. Regulation of the hemA gene during 5-aminolevulinic acid formation in Pseudomonas aeruginosa. Hungerer C; Troup B; Römling U; Jahn D J Bacteriol; 1995 Mar; 177(6):1435-43. PubMed ID: 7883699 [TBL] [Abstract][Full Text] [Related]
57. Structure elucidation and preliminary assessment of hydrolase activity of PqsE, the Pseudomonas quinolone signal (PQS) response protein. Yu S; Jensen V; Seeliger J; Feldmann I; Weber S; Schleicher E; Häussler S; Blankenfeldt W Biochemistry; 2009 Nov; 48(43):10298-307. PubMed ID: 19788310 [TBL] [Abstract][Full Text] [Related]
58. Role of mprF1 and mprF2 in the pathogenicity of Enterococcus faecalis. Bao Y; Sakinc T; Laverde D; Wobser D; Benachour A; Theilacker C; Hartke A; Huebner J PLoS One; 2012; 7(6):e38458. PubMed ID: 22723861 [TBL] [Abstract][Full Text] [Related]
59. Influence of a putative ECF sigma factor on expression of the major outer membrane protein, OprF, in Pseudomonas aeruginosa and Pseudomonas fluorescens. Brinkman FS; Schoofs G; Hancock RE; De Mot R J Bacteriol; 1999 Aug; 181(16):4746-54. PubMed ID: 10438740 [TBL] [Abstract][Full Text] [Related]
60. Pseudomonas aeruginosa Regulated Intramembrane Proteolysis: Protease MucP Can Overcome Mutations in the AlgO Periplasmic Protease To Restore Alginate Production in Nonmucoid Revertants. Delgado C; Florez L; Lollett I; Lopez C; Kangeyan S; Kumari H; Stylianou M; Smiddy RJ; Schneper L; Sautter RT; Smith D; Szatmari G; Mathee K J Bacteriol; 2018 Aug; 200(16):. PubMed ID: 29784885 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]