BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 23793130)

  • 21. Two amino acids missing of MtrA resulted in increased erythromycin level and altered phenotypes in Saccharopolyspora erythraea.
    Pan Q; Tong Y; Han YJ; Ye BC
    Appl Microbiol Biotechnol; 2019 Jun; 103(11):4539-4548. PubMed ID: 30997553
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A CRISPR-Cas9 Strategy for Activating the Saccharopolyspora erythraea Erythromycin Biosynthetic Gene Cluster with Knock-in Bidirectional Promoters.
    Liu Y; Ren CY; Wei WP; You D; Yin BC; Ye BC
    ACS Synth Biol; 2019 May; 8(5):1134-1143. PubMed ID: 30951293
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Reciprocal Regulation of GlnR and PhoP in Response to Nitrogen and Phosphate Limitations in Saccharopolyspora erythraea.
    Yao LL; Ye BC
    Appl Environ Microbiol; 2016 Jan; 82(1):409-20. PubMed ID: 26519391
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identification and characterization of a new erythromycin biosynthetic gene cluster in Actinopolyspora erythraea YIM90600, a novel erythronolide-producing halophilic actinomycete isolated from salt field.
    Chen D; Feng J; Huang L; Zhang Q; Wu J; Zhu X; Duan Y; Xu Z
    PLoS One; 2014; 9(9):e108129. PubMed ID: 25250723
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Blocking the flow of propionate into TCA cycle through a mutB knockout leads to a significant increase of erythromycin production by an industrial strain of Saccharopolyspora erythraea.
    Chen C; Hong M; Chu J; Huang M; Ouyang L; Tian X; Zhuang Y
    Bioprocess Biosyst Eng; 2017 Feb; 40(2):201-209. PubMed ID: 27709326
    [TBL] [Abstract][Full Text] [Related]  

  • 26. GlnR-mediated regulation of nitrogen metabolism in the actinomycete Saccharopolyspora erythraea.
    Yao LL; Liao CH; Huang G; Zhou Y; Rigali S; Zhang B; Ye BC
    Appl Microbiol Biotechnol; 2014 Sep; 98(18):7935-48. PubMed ID: 24931311
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Engineering of succinyl-CoA metabolism in view of succinylation regulation to improve the erythromycin production.
    Ke X; Jiang X; Huang M; Tian X; Chu J
    Appl Microbiol Biotechnol; 2022 Aug; 106(13-16):5153-5165. PubMed ID: 35821431
    [TBL] [Abstract][Full Text] [Related]  

  • 28. New erythromycin derivatives from Saccharopolyspora erythraea using sugar O-methyltransferases from the spinosyn biosynthetic gene cluster.
    Gaisser S; Lill R; Wirtz G; Grolle F; Staunton J; Leadlay PF
    Mol Microbiol; 2001 Sep; 41(5):1223-31. PubMed ID: 11555300
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Lysine propionylation modulates the transcriptional activity of phosphate regulator PhoP in Saccharopolyspora erythraea.
    Xu Y; Li YX; Ye BC
    Mol Microbiol; 2018 Nov; 110(4):648-661. PubMed ID: 30303579
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identifying modules of coexpressed transcript units and their organization of Saccharopolyspora erythraea from time series gene expression profiles.
    Chang X; Liu S; Yu YT; Li YX; Li YY
    PLoS One; 2010 Aug; 5(8):e12126. PubMed ID: 20711345
    [TBL] [Abstract][Full Text] [Related]  

  • 31. PhoP- and GlnR-mediated regulation of metK transcription and its impact upon S-adenosyl-methionine biosynthesis in Saccharopolyspora erythraea.
    Pei JF; Li YX; Tang H; Wei W; Ye BC
    Microb Cell Fact; 2022 Jun; 21(1):120. PubMed ID: 35717184
    [TBL] [Abstract][Full Text] [Related]  

  • 32. In vivo investigation to the macrolide-glycosylating enzyme pair DesVII/DesVIII in Saccharopolyspora erythraea.
    Wu H; Li W; Xin C; Zhang C; Wang Y; Ren S; Ren M; Zhao W; Yuan L; Xu Z; Yuan H; Geng M; Zhang L; Weaver DT; Zhang B
    Appl Microbiol Biotechnol; 2016 Mar; 100(5):2257-66. PubMed ID: 26552796
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Improved bioconversion of 15-fluoro-6-deoxyerythronolide B to 15-fluoro-erythromycin A by overexpression of the eryK Gene in Saccharopolyspora erythraea.
    Desai RP; Rodriguez E; Galazzo JL; Licari P
    Biotechnol Prog; 2004; 20(6):1660-5. PubMed ID: 15575696
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Random transposon mutagenesis of the Saccharopolyspora erythraea genome reveals additional genes influencing erythromycin biosynthesis.
    Fedashchin A; Cernota WH; Gonzalez MC; Leach BI; Kwan N; Wesley RK; Weber JM
    FEMS Microbiol Lett; 2015 Nov; 362(22):. PubMed ID: 26468041
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A novel multidomain acyl-CoA carboxylase in Saccharopolyspora erythraea provides malonyl-CoA for de novo fatty acid biosynthesis.
    Livieri AL; Navone L; Marcellin E; Gramajo H; Rodriguez E
    Sci Rep; 2019 Apr; 9(1):6725. PubMed ID: 31040353
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Interspecies complementation in Saccharopolyspora erythraea : elucidation of the function of oleP1, oleG1 and oleG2 from the oleandomycin biosynthetic gene cluster of Streptomyces antibioticus and generation of new erythromycin derivatives.
    Doumith M; Legrand R; Lang C; Salas JA; Raynal MC
    Mol Microbiol; 1999 Dec; 34(5):1039-48. PubMed ID: 10594828
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Analysis of genes involved in 6-deoxyhexose biosynthesis and transfer in Saccharopolyspora erythraea.
    Doumith M; Weingarten P; Wehmeier UF; Salah-Bey K; Benhamou B; Capdevila C; Michel JM; Piepersberg W; Raynal MC
    Mol Gen Genet; 2000 Nov; 264(4):477-85. PubMed ID: 11129052
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Developmental regulator BldD directly regulates lincomycin biosynthesis in Streptomyces lincolnensis.
    Li J; Wang N; Tang Y; Cai X; Xu Y; Liu R; Wu H; Zhang B
    Biochem Biophys Res Commun; 2019 Oct; 518(3):548-553. PubMed ID: 31447118
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A genetically engineered strain of Saccharopolyspora erythraea that produces 6,12-dideoxyerythromycin A as the major fermentation product.
    Stassi D; Post D; Satter M; Jackson M; Maine G
    Appl Microbiol Biotechnol; 1998 Jun; 49(6):725-31. PubMed ID: 9684306
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The Novel Transcriptional Regulator LmbU Promotes Lincomycin Biosynthesis through Regulating Expression of Its Target Genes in Streptomyces lincolnensis.
    Hou B; Lin Y; Wu H; Guo M; Petkovic H; Tao L; Zhu X; Ye J; Zhang H
    J Bacteriol; 2018 Jan; 200(2):. PubMed ID: 29038257
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.