BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 23793130)

  • 41. Improved erythromycin production in a genetically engineered industrial strain of Saccharopolyspora erythraea.
    Minas W; Brünker P; Kallio PT; Bailey JE
    Biotechnol Prog; 1998; 14(4):561-6. PubMed ID: 9694676
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A defined system for hybrid macrolide biosynthesis in Saccharopolyspora erythraea.
    Gaisser S; Reather J; Wirtz G; Kellenberger L; Staunton J; Leadlay PF
    Mol Microbiol; 2000 Apr; 36(2):391-401. PubMed ID: 10792725
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Regulation of Sporangium Formation by BldD in the Rare Actinomycete Actinoplanes missouriensis.
    Mouri Y; Konishi K; Fujita A; Tezuka T; Ohnishi Y
    J Bacteriol; 2017 Jun; 199(12):. PubMed ID: 28348024
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Identification and Characterization of a Novel
    Gutacker F; Schmidt-Bohli YI; Strobel T; Qiu D; Jessen H; Paululat T; Bechthold A
    Molecules; 2020 Jul; 25(15):. PubMed ID: 32727097
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Metabolic Engineering Strategies Based on Secondary Messengers (p)ppGpp and C-di-GMP To Increase Erythromycin Yield in Saccharopolyspora erythraea.
    Xu Z; You D; Tang LY; Zhou Y; Ye BC
    ACS Synth Biol; 2019 Feb; 8(2):332-345. PubMed ID: 30632732
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Analysis of seven genes from the eryAI-eryK region of the erythromycin biosynthetic gene cluster in Saccharopolyspora erythraea.
    Gaisser S; Böhm GA; Cortés J; Leadlay PF
    Mol Gen Genet; 1997 Oct; 256(3):239-51. PubMed ID: 9393448
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Temporal dynamics of the Saccharopolyspora erythraea phosphoproteome.
    Licona-Cassani C; Lim S; Marcellin E; Nielsen LK
    Mol Cell Proteomics; 2014 May; 13(5):1219-30. PubMed ID: 24615062
    [TBL] [Abstract][Full Text] [Related]  

  • 48. IS1136, an insertion element in the erythromycin gene cluster of Saccharopolyspora erythraea.
    Donadio S; Staver MJ
    Gene; 1993 Apr; 126(1):147-51. PubMed ID: 8386127
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Integrated omics approaches provide strategies for rapid erythromycin yield increase in Saccharopolyspora erythraea.
    Karničar K; Drobnak I; Petek M; Magdevska V; Horvat J; Vidmar R; Baebler Š; Rotter A; Jamnik P; Fujs Š; Turk B; Fonovič M; Gruden K; Kosec G; Petković H
    Microb Cell Fact; 2016 Jun; 15():93. PubMed ID: 27255285
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Analysis of eryBI, eryBIII and eryBVII from the erythromycin biosynthetic gene cluster in Saccharopolyspora erythraea.
    Gaisser S; Böhm GA; Doumith M; Raynal MC; Dhillon N; Cortés J; Leadlay PF
    Mol Gen Genet; 1998 Apr; 258(1-2):78-88. PubMed ID: 9613575
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Genetic modulation of the overexpression of tailoring genes eryK and eryG leading to the improvement of erythromycin A purity and production in Saccharopolyspora erythraea fermentation.
    Chen Y; Deng W; Wu J; Qian J; Chu J; Zhuang Y; Zhang S; Liu W
    Appl Environ Microbiol; 2008 Mar; 74(6):1820-8. PubMed ID: 18223111
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Cofactor Engineering Redirects Secondary Metabolism and Enhances Erythromycin Production in
    Li X; Chen J; Andersen JM; Chu J; Jensen PR
    ACS Synth Biol; 2020 Mar; 9(3):655-670. PubMed ID: 32078772
    [No Abstract]   [Full Text] [Related]  

  • 53. Effect of the TetR family transcriptional regulator Sp1418 on the global metabolic network of Saccharopolyspora pogona.
    He H; Yuan S; Hu J; Chen J; Rang J; Tang J; Liu Z; Xia Z; Ding X; Hu S; Xia L
    Microb Cell Fact; 2020 Feb; 19(1):27. PubMed ID: 32046731
    [TBL] [Abstract][Full Text] [Related]  

  • 54. CRISPR/Cas9-Mediated Multi-Locus Promoter Engineering in
    Zhang X; Wang Y; Zhang Y; Wang M
    Microorganisms; 2023 Feb; 11(3):. PubMed ID: 36985197
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Systems perspectives on erythromycin biosynthesis by comparative genomic and transcriptomic analyses of S. erythraea E3 and NRRL23338 strains.
    Li YY; Chang X; Yu WB; Li H; Ye ZQ; Yu H; Liu BH; Zhang Y; Zhang SL; Ye BC; Li YX
    BMC Genomics; 2013 Jul; 14():523. PubMed ID: 23902230
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Reverse engineering of industrial pharmaceutical-producing actinomycete strains using DNA microarrays.
    Lum AM; Huang J; Hutchinson CR; Kao CM
    Metab Eng; 2004 Jul; 6(3):186-96. PubMed ID: 15256208
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Transcriptional organization of the erythromycin biosynthetic gene cluster of Saccharopolyspora erythraea.
    Reeves AR; English RS; Lampel JS; Post DA; Vanden Boom TJ
    J Bacteriol; 1999 Nov; 181(22):7098-106. PubMed ID: 10559177
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Antibiotic overproduction by rpsL and rsmG mutants of various actinomycetes.
    Tanaka Y; Komatsu M; Okamoto S; Tokuyama S; Kaji A; Ikeda H; Ochi K
    Appl Environ Microbiol; 2009 Jul; 75(14):4919-22. PubMed ID: 19447953
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Engineering of the methylmalonyl-CoA metabolite node of Saccharopolyspora erythraea for increased erythromycin production.
    Reeves AR; Brikun IA; Cernota WH; Leach BI; Gonzalez MC; Weber JM
    Metab Eng; 2007 May; 9(3):293-303. PubMed ID: 17482861
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Identification of a TetR family regulator and a polyketide synthase gene cluster involved in growth development and butenyl-spinosyn biosynthesis of Saccharopolyspora pogona.
    Rang J; Zhu Z; Li Y; Cao L; He H; Tang J; Hu J; Chen J; Hu S; Huang W; Yu Z; Ding X; Sun Y; Xie Q; Xia L
    Appl Microbiol Biotechnol; 2021 Feb; 105(4):1519-1533. PubMed ID: 33484320
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.