These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
232 related articles for article (PubMed ID: 23793493)
1. Coating NiTi archwires with diamond-like carbon films: reducing fluoride-induced corrosion and improving frictional properties. Huang SY; Huang JJ; Kang T; Diao DF; Duan YZ J Mater Sci Mater Med; 2013 Oct; 24(10):2287-92. PubMed ID: 23793493 [TBL] [Abstract][Full Text] [Related]
2. Variation in surface topography of different NiTi orthodontic archwires in various commercial fluoride-containing environments. Huang HH Dent Mater; 2007 Jan; 23(1):24-33. PubMed ID: 16417915 [TBL] [Abstract][Full Text] [Related]
3. Dissolution effect and cytotoxicity of diamond-like carbon coatings on orthodontic archwires. Kobayashi S; Ohgoe Y; Ozeki K; Hirakuri K; Aoki H J Mater Sci Mater Med; 2007 Dec; 18(12):2263-8. PubMed ID: 17562139 [TBL] [Abstract][Full Text] [Related]
4. Corrosion resistance of different nickel-titanium archwires in acidic fluoride-containing artificial saliva. Lee TH; Huang TK; Lin SY; Chen LK; Chou MY; Huang HH Angle Orthod; 2010 May; 80(3):547-53. PubMed ID: 20050751 [TBL] [Abstract][Full Text] [Related]
5. The Effects of Diamond-Like Carbon Films on Fretting Wear Behavior of Orthodontic Archwire-Bracket Contacts. Kang T; Huang SY; Huang JJ; Li QH; Diao DF; Duan YZ J Nanosci Nanotechnol; 2015 Jun; 15(6):4641-7. PubMed ID: 26369091 [TBL] [Abstract][Full Text] [Related]
6. Effects of a diamond-like carbon coating on the frictional properties of orthodontic wires. Muguruma T; Iijima M; Brantley WA; Mizoguchi I Angle Orthod; 2011 Jan; 81(1):141-48. PubMed ID: 20936967 [TBL] [Abstract][Full Text] [Related]
7. Reliability performance of titanium sputter coated Ni-Ti arch wires: mechanical performance and nickel release evaluation. Anuradha P; Varma NK; Balakrishnan A Biomed Mater Eng; 2015; 26(1-2):67-77. PubMed ID: 26484557 [TBL] [Abstract][Full Text] [Related]
8. The effect of salbutamol sulphate inhalation (an anti-asthmatic medication) on the surfaces of orthodontic Archwires. Alemran MA; Abbassy MA; Bakry AS; Alsaggaf DH; Abu Haimed TS; Zawawi KH Orthod Craniofac Res; 2024 Jun; 27(3):447-454. PubMed ID: 38153199 [TBL] [Abstract][Full Text] [Related]
9. Surface corrosion and fracture resistance of two nickel-titanium-based archwires induced by fluoride, pH, and thermocycling. An in vitro comparative study. Perinetti G; Contardo L; Ceschi M; Antoniolli F; Franchi L; Baccetti T; Di Lenarda R Eur J Orthod; 2012 Feb; 34(1):1-9. PubMed ID: 21041836 [TBL] [Abstract][Full Text] [Related]
10. Surface topography of plain nickel-titanium (NiTi), as-received aesthetic (coated) NiTi, and aesthetic NiTi archwires sterilized by autoclaving or glutaraldehyde immersion: A profilometry/SEM/AFM study. Shamohammadi M; Hormozi E; Moradinezhad M; Moradi M; Skini M; Rakhshan V Int Orthod; 2019 Mar; 17(1):60-72. PubMed ID: 30777734 [TBL] [Abstract][Full Text] [Related]
11. Effects of nanostructured, diamondlike, carbon coating and nitrocarburizing on the frictional properties and biocompatibility of orthodontic stainless steel wires. Zhang H; Guo S; Wang D; Zhou T; Wang L; Ma J Angle Orthod; 2016 Sep; 86(5):782-8. PubMed ID: 26927019 [TBL] [Abstract][Full Text] [Related]
12. Development and evaluation of two PVD-coated β-titanium orthodontic archwires for fluoride-induced corrosion protection. Krishnan V; Krishnan A; Remya R; Ravikumar KK; Nair SA; Shibli SM; Varma HK; Sukumaran K; Kumar KJ Acta Biomater; 2011 Apr; 7(4):1913-27. PubMed ID: 21111072 [TBL] [Abstract][Full Text] [Related]
13. In vitro surface corrosion of stainless steel and NiTi orthodontic appliances. Shin JS; Oh KT; Hwang CJ Aust Orthod J; 2003 Apr; 19(1):13-8. PubMed ID: 12790351 [TBL] [Abstract][Full Text] [Related]
14. Influence of surface layer on mechanical and corrosion properties of nickel-titanium orthodontic wires. Katić V; Curković HO; Semenski D; Baršić G; Marušić K; Spalj S Angle Orthod; 2014 Nov; 84(6):1041-8. PubMed ID: 24654939 [TBL] [Abstract][Full Text] [Related]
15. In vivo assessment of the corrosion of nickel-titanium orthodontic archwires by using scanning electron microscopy and atomic force microscopy. Ogawa CM; Faltin K; Maeda FA; Ortolani CLF; Guaré RO; Cardoso CAB; Costa ALF Microsc Res Tech; 2020 Aug; 83(8):928-936. PubMed ID: 32233101 [TBL] [Abstract][Full Text] [Related]
16. Tribological behaviour of orthodontic archwires under dry and wet sliding conditions in-vitro. II--Wear patterns. Berradja A; Willems G; Celis JP Aust Orthod J; 2006 May; 22(1):21-9. PubMed ID: 16792242 [TBL] [Abstract][Full Text] [Related]
17. Surface characterizations and corrosion resistance of nickel-titanium orthodontic archwires in artificial saliva of various degrees of acidity. Huang HH J Biomed Mater Res A; 2005 Sep; 74(4):629-39. PubMed ID: 16025472 [TBL] [Abstract][Full Text] [Related]
18. Reduction in static friction by deposition of a homogeneous diamond-like carbon (DLC) coating on orthodontic brackets. Akaike S; Hayakawa T; Kobayashi D; Aono Y; Hirata A; Hiratsuka M; Nakamura Y Dent Mater J; 2015; 34(6):888-95. PubMed ID: 26632239 [TBL] [Abstract][Full Text] [Related]