BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 23793529)

  • 1. Mortality prediction of rats in acute hemorrhagic shock using machine learning techniques.
    Kim KA; Choi JY; Yoo TK; Kim SK; Chung K; Kim DW
    Med Biol Eng Comput; 2013 Sep; 51(9):1059-67. PubMed ID: 23793529
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new severity predicting index for hemorrhagic shock using lactate concentration and peripheral perfusion in a rat model.
    Choi JY; Lee WH; Yoo TK; Park I; Kim DW
    Shock; 2012 Dec; 38(6):635-41. PubMed ID: 23143055
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of ATLS hypovolemic shock class in rats using the perfusion index and lactate concentration.
    Choi SB; Park JS; Chung JW; Kim SW; Kim DW
    Shock; 2015 Apr; 43(4):361-8. PubMed ID: 25394246
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A survival prediction model of rats in hemorrhagic shock using the random forest classifier.
    Choi JY; Kim SK; Lee WH; Yoo TK; Kim DW
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():5570-3. PubMed ID: 23367191
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ATLS Hypovolemic Shock Classification by Prediction of Blood Loss in Rats Using Regression Models.
    Choi SB; Choi JY; Park JS; Kim DW
    Shock; 2016 Jul; 46(1):92-8. PubMed ID: 26825636
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of survival predictions for rats with hemorrhagic shocks using an artificial neural network and support vector machine.
    Jang KH; Yoo TK; Choi JY; Nam KC; Choi JL; Kwon MK; Kim DW
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():91-4. PubMed ID: 22254258
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hypertension and vulnerability to hemorrhagic shock in a rat model.
    Reynolds PS; Song KS; Tamariz FJ; Wayne Barbee R
    Shock; 2015 Feb; 43(2):148-56. PubMed ID: 25300030
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The pulse pressure/heart rate ratio as a marker of stroke volume changes during hemorrhagic shock and resuscitation in anesthetized swine.
    Pottecher J; Chemla D; Xavier L; Liu N; Chazot T; Marescaux J; Fischler M; Diemunsch P; Duranteau J
    J Trauma Acute Care Surg; 2013 Jun; 74(6):1438-45. PubMed ID: 23694870
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Artificial intelligence in clinical care amidst COVID-19 pandemic: A systematic review.
    Adamidi ES; Mitsis K; Nikita KS
    Comput Struct Biotechnol J; 2021; 19():2833-2850. PubMed ID: 34025952
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prehospital shock index and pulse pressure/heart rate ratio to predict massive transfusion after severe trauma: Retrospective analysis of a large regional trauma database.
    Pottecher J; Ageron FX; Fauché C; Chemla D; Noll E; Duranteau J; Chapiteau L; Payen JF; Bouzat P
    J Trauma Acute Care Surg; 2016 Oct; 81(4):713-22. PubMed ID: 27648770
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Osteoporosis risk prediction using machine learning and conventional methods.
    Kim SK; Yoo TK; Oh E; Kim DW
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():188-91. PubMed ID: 24109656
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparison of base deficit and vital signs in the early assessment of patients with penetrating trauma in a high burden setting.
    Dunham MP; Sartorius B; Laing GL; Bruce JL; Clarke DL
    Injury; 2017 Sep; 48(9):1972-1977. PubMed ID: 28684079
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mortality prediction in patients with isolated moderate and severe traumatic brain injury using machine learning models.
    Rau CS; Kuo PJ; Chien PC; Huang CY; Hsieh HY; Hsieh CH
    PLoS One; 2018; 13(11):e0207192. PubMed ID: 30412613
    [TBL] [Abstract][Full Text] [Related]  

  • 14. From vital signs to clinical outcomes for patients with sepsis: a machine learning basis for a clinical decision support system.
    Gultepe E; Green JP; Nguyen H; Adams J; Albertson T; Tagkopoulos I
    J Am Med Inform Assoc; 2014; 21(2):315-25. PubMed ID: 23959843
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental study of controlled fluid resuscitation in the treatment of severe and uncontrolled hemorrhagic shock.
    Lu YQ; Cai XJ; Gu LH; Wang Q; Huang WD; Bao DG
    J Trauma; 2007 Oct; 63(4):798-804. PubMed ID: 18090008
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting in-hospital mortality of patients with acute kidney injury in the ICU using random forest model.
    Lin K; Hu Y; Kong G
    Int J Med Inform; 2019 May; 125():55-61. PubMed ID: 30914181
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of alcohol intoxication on hemodynamic, metabolic, and cytokine responses to hemorrhagic shock.
    Phelan H; Stahls P; Hunt J; Bagby GJ; Molina PE
    J Trauma; 2002 Apr; 52(4):675-82. PubMed ID: 11956381
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Small volume 7.5% NaCl with 6% Dextran-70 or 6% and 10% hetastarch are associated with arrhythmias and death after 60 minutes of severe hemorrhagic shock in the rat in vivo.
    Letson HL; Dobson GP
    J Trauma; 2011 Jun; 70(6):1444-52. PubMed ID: 20805759
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The use of polynomial neural networks for mortality prediction in uncontrolled venous and arterial hemorrhage.
    Roberts DA; Holcomb JB; Parker BE; Sondeen JL; Pusateri AE; Brady WJ; Sweenor DE; Young JS
    J Trauma; 2002 Jan; 52(1):130-5. PubMed ID: 11791063
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Traumatic brain injury attenuates the effectiveness of lactated Ringer's solution resuscitation of hemorrhagic shock in rats.
    Yuan XQ; Wade CE
    Surg Gynecol Obstet; 1992 Apr; 174(4):305-12. PubMed ID: 1553610
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.