These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 23793633)
1. Application of denaturing high-performance liquid chromatography for monitoring sulfate-reducing bacteria in oil fields. Priha O; Nyyssönen M; Bomberg M; Laitila A; Simell J; Kapanen A; Juvonen R Appl Environ Microbiol; 2013 Sep; 79(17):5186-96. PubMed ID: 23793633 [TBL] [Abstract][Full Text] [Related]
2. Coexistence of sulfate reducers with the other oil bacterial groups in Diyarbakır oil fields. Tüccar T; Ilhan-Sungur E; Abbas B; Muyzer G Anaerobe; 2019 Oct; 59():19-31. PubMed ID: 31029749 [TBL] [Abstract][Full Text] [Related]
3. Analysis of diversity and activity of sulfate-reducing bacterial communities in sulfidogenic bioreactors using 16S rRNA and dsrB genes as molecular markers. Dar SA; Yao L; van Dongen U; Kuenen JG; Muyzer G Appl Environ Microbiol; 2007 Jan; 73(2):594-604. PubMed ID: 17098925 [TBL] [Abstract][Full Text] [Related]
4. DsrB gene-based DGGE for community and diversity surveys of sulfate-reducing bacteria. Geets J; Borremans B; Diels L; Springael D; Vangronsveld J; van der Lelie D; Vanbroekhoven K J Microbiol Methods; 2006 Aug; 66(2):194-205. PubMed ID: 16337704 [TBL] [Abstract][Full Text] [Related]
5. Column experiments to assess the effects of electron donors on the efficiency of in situ precipitation of Zn, Cd, Co and Ni in contaminated groundwater applying the biological sulfate removal technology. Geets J; Vanbroekhoven K; Borremans B; Vangronsveld J; Diels L; van der Lelie D Environ Sci Pollut Res Int; 2006 Oct; 13(6):362-78. PubMed ID: 17120826 [TBL] [Abstract][Full Text] [Related]
6. Comparison of sulphate-reducing bacterial communities in Japanese fish farm sediments with different levels of organic enrichment. Kondo R; Mori Y; Sakami T Microbes Environ; 2012; 27(2):193-9. PubMed ID: 22791053 [TBL] [Abstract][Full Text] [Related]
7. Revealing biogenic sulfuric acid corrosion in sludge digesters: detection of sulfur-oxidizing bacteria within full-scale digesters. Huber B; Drewes JE; Lin KC; König R; Müller E Water Sci Technol; 2014; 70(8):1405-11. PubMed ID: 25353947 [TBL] [Abstract][Full Text] [Related]
8. Abundance and diversity of sulfate-reducing bacteria in the sediment of the Zhou Cun drinking water reservoir in Eastern China. Yang X; Huang TL; Guo L; Xia C; Zhang HH; Zhou SL Genet Mol Res; 2015 May; 14(2):5830-44. PubMed ID: 26125782 [TBL] [Abstract][Full Text] [Related]
9. Microorganisms with novel dissimilatory (bi)sulfite reductase genes are widespread and part of the core microbiota in low-sulfate peatlands. Steger D; Wentrup C; Braunegger C; Deevong P; Hofer M; Richter A; Baranyi C; Pester M; Wagner M; Loy A Appl Environ Microbiol; 2011 Feb; 77(4):1231-42. PubMed ID: 21169452 [TBL] [Abstract][Full Text] [Related]
10. Diversity and composition of sulfate- and sulfite-reducing prokaryotes as affected by marine-freshwater gradient and sulfate availability. Fan LF; Tang SL; Chen CP; Hsieh HL Microb Ecol; 2012 Jan; 63(1):224-37. PubMed ID: 21785985 [TBL] [Abstract][Full Text] [Related]
11. Direct analysis of sulfate reducing bacterial communities in gas hydrate-impacted marine sediments by PCR-DGGE. Bagwell CE; Formolo M; Ye Q; Yeager CM; Lyons TW; Zhang CL J Basic Microbiol; 2009 Sep; 49 Suppl 1():S87-92. PubMed ID: 19322839 [TBL] [Abstract][Full Text] [Related]
12. Rapid detection and quantification of bisulfite reductase genes in oil field samples using real-time PCR. Agrawal A; Lal B FEMS Microbiol Ecol; 2009 Aug; 69(2):301-12. PubMed ID: 19527290 [TBL] [Abstract][Full Text] [Related]
13. Characterization of bacterial community associated to biofilms of corroded oil pipelines from the southeast of Mexico. Neria-González I; Wang ET; Ramírez F; Romero JM; Hernández-Rodríguez C Anaerobe; 2006 Jun; 12(3):122-33. PubMed ID: 16765858 [TBL] [Abstract][Full Text] [Related]
14. Nested PCR-denaturing gradient gel electrophoresis approach to determine the diversity of sulfate-reducing bacteria in complex microbial communities. Dar SA; Kuenen JG; Muyzer G Appl Environ Microbiol; 2005 May; 71(5):2325-30. PubMed ID: 15870318 [TBL] [Abstract][Full Text] [Related]
15. Sulfate-reducing bacteria in leachate-polluted aquifers along the shore of the East China Sea. Wu XJ; Pan JL; Liu XL; Tan J; Li DT; Yang H Can J Microbiol; 2009 Jul; 55(7):818-28. PubMed ID: 19767854 [TBL] [Abstract][Full Text] [Related]
16. Diversity analysis of sulfite- and sulfate-reducing microorganisms by multiplex dsrA and dsrB amplicon sequencing using new primers and mock community-optimized bioinformatics. Pelikan C; Herbold CW; Hausmann B; Müller AL; Pester M; Loy A Environ Microbiol; 2016 Sep; 18(9):2994-3009. PubMed ID: 26625892 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of the sulfate-reducing bacterial population associated with stored swine slurry. Cook KL; Whitehead TR; Spence C; Cotta MA Anaerobe; 2008 Jun; 14(3):172-80. PubMed ID: 18457964 [TBL] [Abstract][Full Text] [Related]
18. Bacterial community structure and activity of sulfate reducing bacteria in a membrane aerated biofilm analyzed by microsensor and molecular techniques. Liu H; Tan S; Sheng Z; Liu Y; Yu T Biotechnol Bioeng; 2014 Nov; 111(11):2155-62. PubMed ID: 24890472 [TBL] [Abstract][Full Text] [Related]
19. Diversity of dissimilatory sulfite reductase genes (dsrAB) in a salt marsh impacted by long-term acid mine drainage. Moreau JW; Zierenberg RA; Banfield JF Appl Environ Microbiol; 2010 Jul; 76(14):4819-28. PubMed ID: 20472728 [TBL] [Abstract][Full Text] [Related]
20. Response of the sulfate-reducing community to the re-establishment of estuarine conditions in two contrasting soils: a mesocosm approach. Miletto M; Loeb R; Antheunisse AM; Bodelier PL; Laanbroek HJ Microb Ecol; 2010 Jan; 59(1):109-20. PubMed ID: 19953240 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]