BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 23793864)

  • 21. In silico aided metabolic engineering of Klebsiella oxytoca and fermentation optimization for enhanced 2,3-butanediol production.
    Park JM; Song H; Lee HJ; Seung D
    J Ind Microbiol Biotechnol; 2013 Sep; 40(9):1057-66. PubMed ID: 23779220
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Effect of acetic acid, furfural and 5-hydroxymethylfurfural on production of 2,3-butanediol by Klebsiella oxytoca].
    Wu J; Cheng K; Li W; Feng J; Zhang J
    Sheng Wu Gong Cheng Xue Bao; 2013 Mar; 29(3):350-7. PubMed ID: 23789276
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Production of 2,3-butanediol from acid hydrolysates of Jatropha hulls with Klebsiella oxytoca.
    Jiang LQ; Fang Z; Guo F; Yang LB
    Bioresour Technol; 2012 Mar; 107():405-10. PubMed ID: 22230777
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fermentation and evaluation of Klebsiella pneumoniae and K. oxytoca on the production of 2,3-butanediol.
    Cho JH; Rathnasingh C; Song H; Chung BW; Lee HJ; Seung D
    Bioprocess Biosyst Eng; 2012 Sep; 35(7):1081-8. PubMed ID: 22307808
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Bacillus subtilis ydjL (bdhA) gene encodes acetoin reductase/2,3-butanediol dehydrogenase.
    Nicholson WL
    Appl Environ Microbiol; 2008 Nov; 74(22):6832-8. PubMed ID: 18820069
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Identification and characterization of a novel 2,3-butanediol dehydrogenase/acetoin reductase from Corynebacterium crenatum SYPA5-5.
    Zhao X; Zhang X; Rao Z; Bao T; Li X; Xu M; Yang T; Yang S
    Lett Appl Microbiol; 2015 Dec; 61(6):573-9. PubMed ID: 26393961
    [TBL] [Abstract][Full Text] [Related]  

  • 27. High production of 2,3-butanediol from biodiesel-derived crude glycerol by metabolically engineered Klebsiella oxytoca M1.
    Cho S; Kim T; Woo HM; Kim Y; Lee J; Um Y
    Biotechnol Biofuels; 2015; 8():146. PubMed ID: 26379778
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The influence of budA deletion on glucose metabolism related in 2,3-butanediol production by Klebsiella pneumoniae.
    Kim B; Lee S; Yang J; Jeong D; Shin SH; Kook JH; Yang KS; Lee J
    Enzyme Microb Technol; 2015 Jun; 73-74():1-8. PubMed ID: 26002498
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Elimination of carbon catabolite repression in Klebsiella oxytoca for efficient 2,3-butanediol production from glucose-xylose mixtures.
    Ji XJ; Nie ZK; Huang H; Ren LJ; Peng C; Ouyang PK
    Appl Microbiol Biotechnol; 2011 Feb; 89(4):1119-25. PubMed ID: 20957355
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microbial production of 2,3-butanediol by a newly-isolated strain of Serratia marcescens.
    Shi L; Gao S; Yu Y; Yang H
    Biotechnol Lett; 2014 May; 36(5):969-73. PubMed ID: 24375234
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A new NAD(H)-dependent meso-2,3-butanediol dehydrogenase from an industrially potential strain Serratia marcescens H30.
    Zhang L; Xu Q; Zhan S; Li Y; Lin H; Sun S; Sha L; Hu K; Guan X; Shen Y
    Appl Microbiol Biotechnol; 2014 Feb; 98(3):1175-84. PubMed ID: 23666479
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A newly isolated Enterobacter sp. strain produces 2,3-butanediol during its cultivation on low-cost carbohydrate-based substrates.
    Palaiogeorgou AM; Papanikolaou S; de Castro AM; Freire DMG; Kookos IK; Koutinas AA
    FEMS Microbiol Lett; 2019 Jan; 366(1):. PubMed ID: 30476146
    [TBL] [Abstract][Full Text] [Related]  

  • 33. R-acetoin accumulation and dissimilation in Klebsiella pneumoniae.
    Wang D; Zhou J; Chen C; Wei D; Shi J; Jiang B; Liu P; Hao J
    J Ind Microbiol Biotechnol; 2015 Aug; 42(8):1105-15. PubMed ID: 26059458
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Metabolic engineering of
    Tanwee TNN; Lipscomb GL; Vailionis JL; Zhang K; Bing RG; O'Quinn HC; Poole FL; Zhang Y; Kelly RM; Adams MWW
    Appl Environ Microbiol; 2024 Jan; 90(1):e0195123. PubMed ID: 38131671
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Two-stage pH control strategy based on the pH preference of acetoin reductase regulates acetoin and 2,3-butanediol distribution in Bacillus subtilis.
    Zhang X; Bao T; Rao Z; Yang T; Xu Z; Yang S; Li H
    PLoS One; 2014; 9(3):e91187. PubMed ID: 24608678
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Production of (2S,3S)-2,3-butanediol and (3S)-acetoin from glucose using resting cells of Klebsiella pneumonia and Bacillus subtilis.
    Liu Z; Qin J; Gao C; Hua D; Ma C; Li L; Wang Y; Xu P
    Bioresour Technol; 2011 Nov; 102(22):10741-4. PubMed ID: 21945208
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An effective and simplified fed-batch strategy for improved 2,3-butanediol production by Klebsiella oxytoca.
    Nie ZK; Ji XJ; Huang H; Du J; Li ZY; Qu L; Zhang Q; Ouyang PK
    Appl Biochem Biotechnol; 2011 Apr; 163(8):946-53. PubMed ID: 20938754
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Engineering of Klebsiella oxytoca for production of 2,3-butanediol via simultaneous utilization of sugars from a Golenkinia sp. hydrolysate.
    Park JH; Choi MA; Kim YJ; Kim YC; Chang YK; Jeong KJ
    Bioresour Technol; 2017 Dec; 245(Pt B):1386-1392. PubMed ID: 28601394
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The regulation of 2,3-butanediol synthesis in Klebsiella pneumoniae as revealed by gene over-expressions and metabolic flux analysis.
    Lu M; Park C; Lee S; Kim B; Oh MK; Um Y; Kim J; Lee J
    Bioprocess Biosyst Eng; 2014 Mar; 37(3):343-53. PubMed ID: 23872849
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Metabolic engineering of a novel Klebsiella oxytoca strain for enhanced 2,3-butanediol production.
    Kim DK; Rathnasingh C; Song H; Lee HJ; Seung D; Chang YK
    J Biosci Bioeng; 2013 Aug; 116(2):186-92. PubMed ID: 23643345
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.