These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
509 related articles for article (PubMed ID: 23793914)
21. Heavy metal resistance strategies of acidophilic bacteria and their acquisition: importance for biomining and bioremediation. Navarro CA; von Bernath D; Jerez CA Biol Res; 2013; 46(4):363-71. PubMed ID: 24510139 [TBL] [Abstract][Full Text] [Related]
22. Fungal Biorecovery of Gold From E-waste. Bindschedler S; Vu Bouquet TQT; Job D; Joseph E; Junier P Adv Appl Microbiol; 2017; 99():53-81. PubMed ID: 28438268 [TBL] [Abstract][Full Text] [Related]
23. A case in support of implementing innovative bio-processes in the metal mining industry. Sánchez-Andrea I; Stams AJ; Weijma J; Gonzalez Contreras P; Dijkman H; Rozendal RA; Johnson DB FEMS Microbiol Lett; 2016 Jun; 363(11):. PubMed ID: 27190293 [TBL] [Abstract][Full Text] [Related]
24. Complete genome sequence of Acidihalobacter prosperus strain F5, an extremely acidophilic, iron- and sulfur-oxidizing halophile with potential industrial applicability in saline water bioleaching of chalcopyrite. Khaleque HN; Corbett MK; Ramsay JP; Kaksonen AH; Boxall NJ; Watkin ELJ J Biotechnol; 2017 Nov; 262():56-59. PubMed ID: 28986293 [TBL] [Abstract][Full Text] [Related]
25. Recent challenges in biological cyanidation and oxidation of sulfide-based refractory gold ore. Karimi Darvanjooghi MH; Magdouli S; Brar SK World J Microbiol Biotechnol; 2024 Jan; 40(2):67. PubMed ID: 38197973 [TBL] [Abstract][Full Text] [Related]
26. Recovery of Nickel and Cobalt from Laterite Tailings by Reductive Dissolution under Aerobic Conditions Using Acidithiobacillus Species. Marrero J; Coto O; Goldmann S; Graupner T; Schippers A Environ Sci Technol; 2015 Jun; 49(11):6674-82. PubMed ID: 25923144 [TBL] [Abstract][Full Text] [Related]
28. Metal mobilization by iron- and sulfur-oxidizing bacteria in a multiple extreme mine tailings in the Atacama Desert, Chile. Korehi H; Blöthe M; Sitnikova MA; Dold B; Schippers A Environ Sci Technol; 2013 Mar; 47(5):2189-96. PubMed ID: 23373853 [TBL] [Abstract][Full Text] [Related]
29. Toward Sustainable Solution for Biooxidation of Waste and Refractory Materials Using Neutrophilic and Alkaliphilic Microorganisms-A Review. Lee J; Mahandra H; Hein GA; Ramsay J; Ghahreman A ACS Appl Bio Mater; 2021 Mar; 4(3):2274-2292. PubMed ID: 35014351 [TBL] [Abstract][Full Text] [Related]
30. From Laboratory towards Industrial Operation: Biomarkers for Acidophilic Metabolic Activity in Bioleaching Systems. Marín S; Cortés M; Acosta M; Delgado K; Escuti C; Ayma D; Demergasso C Genes (Basel); 2021 Mar; 12(4):. PubMed ID: 33806162 [TBL] [Abstract][Full Text] [Related]
31. Metagenome-scale analysis yields insights into the structure and function of microbial communities in a copper bioleaching heap. Zhang X; Niu J; Liang Y; Liu X; Yin H BMC Genet; 2016 Jan; 17():21. PubMed ID: 26781463 [TBL] [Abstract][Full Text] [Related]
32. In a quest for engineering acidophiles for biomining applications: challenges and opportunities. Gumulya Y; Boxall NJ; Khaleque HN; Santala V; Carlson RP; Kaksonen AH Genes (Basel); 2018 Feb; 9(2):. PubMed ID: 29466321 [TBL] [Abstract][Full Text] [Related]
34. Ferroplasma and relatives, recently discovered cell wall-lacking archaea making a living in extremely acid, heavy metal-rich environments. Golyshina OV; Timmis KN Environ Microbiol; 2005 Sep; 7(9):1277-88. PubMed ID: 16104851 [TBL] [Abstract][Full Text] [Related]
35. Comparative evaluation of microbial and chemical leaching processes for heavy metal removal from dewatered metal plating sludge. Bayat B; Sari B J Hazard Mater; 2010 Feb; 174(1-3):763-9. PubMed ID: 19880247 [TBL] [Abstract][Full Text] [Related]
36. The smallest space miners: principles of space biomining. Santomartino R; Zea L; Cockell CS Extremophiles; 2022 Jan; 26(1):7. PubMed ID: 34993644 [TBL] [Abstract][Full Text] [Related]
37. Biohydrometallurgy for Rare Earth Elements Recovery from Industrial Wastes. Castro L; Blázquez ML; González F; Muñoz JÁ Molecules; 2021 Oct; 26(20):. PubMed ID: 34684778 [TBL] [Abstract][Full Text] [Related]
38. Progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation--part A. Vera M; Schippers A; Sand W Appl Microbiol Biotechnol; 2013 Sep; 97(17):7529-41. PubMed ID: 23720034 [TBL] [Abstract][Full Text] [Related]
39. The bioleaching potential of a bacterial consortium. Latorre M; Cortés MP; Travisany D; Di Genova A; Budinich M; Reyes-Jara A; Hödar C; González M; Parada P; Bobadilla-Fazzini RA; Cambiazo V; Maass A Bioresour Technol; 2016 Oct; 218():659-66. PubMed ID: 27416516 [TBL] [Abstract][Full Text] [Related]
40. Two-step biohydrometallurgical technology of copper-zinc concentrate processing as an opportunity to reduce negative impacts on the environment. Fomchenko NV; Muravyov MI J Environ Manage; 2018 Nov; 226():270-277. PubMed ID: 30121463 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]