These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
509 related articles for article (PubMed ID: 23793914)
41. Bioleaching combined brine leaching of heavy metals from lead-zinc mine tailings: Transformations during the leaching process. Ye M; Yan P; Sun S; Han D; Xiao X; Zheng L; Huang S; Chen Y; Zhuang S Chemosphere; 2017 Feb; 168():1115-1125. PubMed ID: 27884516 [TBL] [Abstract][Full Text] [Related]
42. Interactions of the metal tolerant heterotrophic microorganisms and iron oxidizing autotrophic bacteria from sulphidic mine environment during bioleaching experiments. Jeremic S; Beškoski VP; Djokic L; Vasiljevic B; Vrvić MM; Avdalović J; Gojgić Cvijović G; Beškoski LS; Nikodinovic-Runic J J Environ Manage; 2016 May; 172():151-61. PubMed ID: 26942859 [TBL] [Abstract][Full Text] [Related]
43. The wide distribution of an extremely thermoacidophilic microorganism in the copper mine at ambient temperature and under acidic condition and its significance in bioleaching of a chalcopyrite concentrate. Kazemi MJ; Kargar M; Nowroozi J; Akhavan Sepahi A; Doosti A; Manafi Z Rev Argent Microbiol; 2019; 51(1):56-65. PubMed ID: 29954620 [TBL] [Abstract][Full Text] [Related]
44. Bioleaching of pyritic coal wastes: bioprospecting and efficiency of selected consortia. Joulian C; Fonti V; Chapron S; Bryan CG; Guezennec AG Res Microbiol; 2020; 171(7):260-270. PubMed ID: 32890633 [TBL] [Abstract][Full Text] [Related]
45. Current scenario of chalcopyrite bioleaching: a review on the recent advances to its heap-leach technology. Panda S; Akcil A; Pradhan N; Deveci H Bioresour Technol; 2015 Nov; 196():694-706. PubMed ID: 26318845 [TBL] [Abstract][Full Text] [Related]
46. Presentation on mechanisms and applications of chalcopyrite and pyrite bioleaching in biohydrometallurgy - a presentation. Tao H; Dongwei L Biotechnol Rep (Amst); 2014 Dec; 4():107-119. PubMed ID: 28626669 [TBL] [Abstract][Full Text] [Related]
47. Aerobic processes for bioleaching manganese and silver using microorganisms indigenous to mine tailings. Huerta-Rosas B; Cano-Rodríguez I; Gamiño-Arroyo Z; Gómez-Castro FI; Carrillo-Pedroza FR; Romo-Rodríguez P; Gutiérrez-Corona JF World J Microbiol Biotechnol; 2020 Jul; 36(8):124. PubMed ID: 32691248 [TBL] [Abstract][Full Text] [Related]
48. Effects of stimulation of copper bioleaching on microbial community in vineyard soil and copper mining waste. Andreazza R; Okeke BC; Pieniz S; Bortolon L; Lambais MR; Camargo FA Biol Trace Elem Res; 2012 Apr; 146(1):124-33. PubMed ID: 21947860 [TBL] [Abstract][Full Text] [Related]
49. The shift of microbial communities and their roles in sulfur and iron cycling in a copper ore bioleaching system. Niu J; Deng J; Xiao Y; He Z; Zhang X; Van Nostrand JD; Liang Y; Deng Y; Liu X; Yin H Sci Rep; 2016 Oct; 6():34744. PubMed ID: 27698381 [TBL] [Abstract][Full Text] [Related]
50. Extraction of copper from an oxidized (lateritic) ore using bacterially catalysed reductive dissolution. Nancucheo I; Grail BM; Hilario F; du Plessis C; Johnson DB Appl Microbiol Biotechnol; 2014; 98(14):6297-305. PubMed ID: 24687752 [TBL] [Abstract][Full Text] [Related]
51. Technological assessment of a mining-waste dump at the Dexing copper mine, China, for possible conversion to an in situ bioleaching operation. Wu A; Yin S; Wang H; Qin W; Qiu G Bioresour Technol; 2009 Mar; 100(6):1931-6. PubMed ID: 19036579 [TBL] [Abstract][Full Text] [Related]
52. Recovery of valuable metals from polymetallic mine tailings by natural microbial consortium. Vardanyan N; Sevoyan G; Navasardyan T; Vardanyan A Environ Technol; 2019 Nov; 40(26):3467-3472. PubMed ID: 29781399 [TBL] [Abstract][Full Text] [Related]
53. Bioleaching mechanism of Zn, Pb, In, Ag, Cd and As from Pb/Zn smelting slag by autotrophic bacteria. Wang J; Huang Q; Li T; Xin B; Chen S; Guo X; Liu C; Li Y J Environ Manage; 2015 Aug; 159():11-17. PubMed ID: 25996622 [TBL] [Abstract][Full Text] [Related]
54. Effective bioleaching of low-grade copper ores: Insights from microbial cross experiments. Wang X; Ma L; Wu J; Xiao Y; Tao J; Liu X Bioresour Technol; 2020 Jul; 308():123273. PubMed ID: 32247948 [TBL] [Abstract][Full Text] [Related]
55. Industrial applications of new sulphur biotechnology. Janssen AJ; Ruitenberg R; Buisman CJ Water Sci Technol; 2001; 44(8):85-90. PubMed ID: 11730141 [TBL] [Abstract][Full Text] [Related]
56. [Leaching of ores with heterotrophic microorganisms. Development of a screening method]. Klages D; Meyer I; Schwartz W; Näveke R Z Allg Mikrobiol; 1981; 21(10):729-37. PubMed ID: 7039150 [TBL] [Abstract][Full Text] [Related]
57. Extremely thermoacidophilic archaea for metal bioleaching: What do their genomes tell Us? Manesh MJH; Willard DJ; Lewis AM; Kelly RM Bioresour Technol; 2024 Jan; 391(Pt B):129988. PubMed ID: 37949149 [TBL] [Abstract][Full Text] [Related]
58. [Gene function and microbial community structure in sulfide minerals bioleaching system based on microarray analysis]. Shen L; Liu X; Qiu G Sheng Wu Gong Cheng Xue Bao; 2008 Jun; 24(6):968-74. PubMed ID: 18807978 [TBL] [Abstract][Full Text] [Related]
59. Microbe-mediated sustainable bio-recovery of gold from low-grade precious solid waste: A microbiological overview. Rana S; Mishra P; Wahid ZA; Thakur S; Pant D; Singh L J Environ Sci (China); 2020 Mar; 89():47-64. PubMed ID: 31892401 [TBL] [Abstract][Full Text] [Related]
60. Biogenic catalysis in sulphide minerals' weathering processes and acid mine drainage genesis. Kušnierová M; Praščáková M; Nowak AK; Gorazda K; Wzorek Z Acta Biochim Pol; 2014; 61(1):33-9. PubMed ID: 24445359 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]