These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. An airborne transmissible avian influenza H5 hemagglutinin seen at the atomic level. Zhang W; Shi Y; Lu X; Shu Y; Qi J; Gao GF Science; 2013 Jun; 340(6139):1463-7. PubMed ID: 23641058 [TBL] [Abstract][Full Text] [Related]
4. Changes in the hemagglutinin of H5N1 viruses during human infection--influence on receptor binding. Crusat M; Liu J; Palma AS; Childs RA; Liu Y; Wharton SA; Lin YP; Coombs PJ; Martin SR; Matrosovich M; Chen Z; Stevens DJ; Hien VM; Thanh TT; Nhu le NT; Nguyet LA; Ha do Q; van Doorn HR; Hien TT; Conradt HS; Kiso M; Gamblin SJ; Chai W; Skehel JJ; Hay AJ; Farrar J; de Jong MD; Feizi T Virology; 2013 Dec; 447(1-2):326-37. PubMed ID: 24050651 [TBL] [Abstract][Full Text] [Related]
6. Enhanced Human-Type Receptor Binding by Ferret-Transmissible H5N1 with a K193T Mutation. Peng W; Bouwman KM; McBride R; Grant OC; Woods RJ; Verheije MH; Paulson JC; de Vries RP J Virol; 2018 May; 92(10):. PubMed ID: 29491160 [TBL] [Abstract][Full Text] [Related]
7. Free energy simulations reveal a double mutant avian H5N1 virus hemagglutinin with altered receptor binding specificity. Das P; Li J; Royyuru AK; Zhou R J Comput Chem; 2009 Aug; 30(11):1654-63. PubMed ID: 19399777 [TBL] [Abstract][Full Text] [Related]
8. Identification of Stabilizing Mutations in an H5 Hemagglutinin Influenza Virus Protein. Hanson A; Imai M; Hatta M; McBride R; Imai H; Taft A; Zhong G; Watanabe T; Suzuki Y; Neumann G; Paulson JC; Kawaoka Y J Virol; 2015 Dec; 90(6):2981-92. PubMed ID: 26719265 [TBL] [Abstract][Full Text] [Related]
9. A Single Amino Acid Substitution at Residue 218 of Hemagglutinin Improves the Growth of Influenza A(H7N9) Candidate Vaccine Viruses. Li X; Gao Y; Ye Z J Virol; 2019 Oct; 93(19):. PubMed ID: 31270231 [TBL] [Abstract][Full Text] [Related]
10. A Replication-Defective Influenza Virus Harboring H5 and H7 Hemagglutinins Provides Protection against H5N1 and H7N9 Infection in Mice. Tian X; Landreth S; Lu Y; Pandey K; Zhou Y J Virol; 2021 Jan; 95(3):. PubMed ID: 33177192 [TBL] [Abstract][Full Text] [Related]
11. Phenotypic Effects of Substitutions within the Receptor Binding Site of Highly Pathogenic Avian Influenza H5N1 Virus Observed during Human Infection. Eggink D; Spronken M; van der Woude R; Buzink J; Broszeit F; McBride R; Pawestri HA; Setiawaty V; Paulson JC; Boons GJ; Fouchier RAM; Russell CA; de Jong MD; de Vries RP J Virol; 2020 Jun; 94(13):. PubMed ID: 32321815 [TBL] [Abstract][Full Text] [Related]
12. Avian and human receptor binding by hemagglutinins of influenza A viruses. Russell RJ; Stevens DJ; Haire LF; Gamblin SJ; Skehel JJ Glycoconj J; 2006 Feb; 23(1-2):85-92. PubMed ID: 16575525 [TBL] [Abstract][Full Text] [Related]
13. HA-Dependent Tropism of H5N1 and H7N9 Influenza Viruses to Human Endothelial Cells Is Determined by Reduced Stability of the HA, Which Allows the Virus To Cope with Inefficient Endosomal Acidification and Constitutively Expressed IFITM3. Hensen L; Matrosovich T; Roth K; Klenk HD; Matrosovich M J Virol; 2019 Dec; 94(1):. PubMed ID: 31597765 [TBL] [Abstract][Full Text] [Related]
14. Structure and receptor specificity of the hemagglutinin from an H5N1 influenza virus. Stevens J; Blixt O; Tumpey TM; Taubenberger JK; Paulson JC; Wilson IA Science; 2006 Apr; 312(5772):404-10. PubMed ID: 16543414 [TBL] [Abstract][Full Text] [Related]
15. The adaptability of H9N2 avian influenza A virus to humans: A comparative docking simulation study. Xu H; Qian J; Song Y; Ming D Biochem Biophys Res Commun; 2020 Sep; 529(4):963-969. PubMed ID: 32819606 [TBL] [Abstract][Full Text] [Related]
16. Amino Acid Substitutions That Affect Receptor Binding and Stability of the Hemagglutinin of Influenza A/H7N9 Virus. Schrauwen EJ; Richard M; Burke DF; Rimmelzwaan GF; Herfst S; Fouchier RA J Virol; 2016 Jan; 90(7):3794-9. PubMed ID: 26792744 [TBL] [Abstract][Full Text] [Related]
17. Enhanced human receptor binding by H5 haemagglutinins. Xiong X; Xiao H; Martin SR; Coombs PJ; Liu J; Collins PJ; Vachieri SG; Walker PA; Lin YP; McCauley JW; Gamblin SJ; Skehel JJ Virology; 2014 May; 456-457(100):179-87. PubMed ID: 24889237 [TBL] [Abstract][Full Text] [Related]
18. Experimental adaptation of an influenza H5 HA confers respiratory droplet transmission to a reassortant H5 HA/H1N1 virus in ferrets. Imai M; Watanabe T; Hatta M; Das SC; Ozawa M; Shinya K; Zhong G; Hanson A; Katsura H; Watanabe S; Li C; Kawakami E; Yamada S; Kiso M; Suzuki Y; Maher EA; Neumann G; Kawaoka Y Nature; 2012 May; 486(7403):420-8. PubMed ID: 22722205 [TBL] [Abstract][Full Text] [Related]
19. Preferential recognition of avian-like receptors in human influenza A H7N9 viruses. Xu R; de Vries RP; Zhu X; Nycholat CM; McBride R; Yu W; Paulson JC; Wilson IA Science; 2013 Dec; 342(6163):1230-5. PubMed ID: 24311689 [TBL] [Abstract][Full Text] [Related]
20. Structures and receptor binding of hemagglutinins from human-infecting H7N9 influenza viruses. Shi Y; Zhang W; Wang F; Qi J; Wu Y; Song H; Gao F; Bi Y; Zhang Y; Fan Z; Qin C; Sun H; Liu J; Haywood J; Liu W; Gong W; Wang D; Shu Y; Wang Y; Yan J; Gao GF Science; 2013 Oct; 342(6155):243-7. PubMed ID: 24009358 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]