These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 23794368)

  • 1. The effects of the formation of Stone-Wales defects on the electronic and magnetic properties of silicon carbide nanoribbons: a first-principles investigation.
    Guan J; Yu G; Ding X; Chen W; Shi Z; Huang X; Sun C
    Chemphyschem; 2013 Aug; 14(12):2841-52. PubMed ID: 23794368
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The donor/acceptor edge-modification: an effective strategy to modulate the electronic and magnetic behaviors of zigzag silicon carbon nanoribbons.
    Ding X; Yu G; Huang X; Chen W
    Phys Chem Chem Phys; 2013 Nov; 15(41):18039-47. PubMed ID: 24060960
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electronic Structure and Reactivity of Boron Nitride Nanoribbons with Stone-Wales Defects.
    Chen W; Li Y; Yu G; Zhou Z; Chen Z
    J Chem Theory Comput; 2009 Nov; 5(11):3088-95. PubMed ID: 26609988
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Boron and nitrogen impurities in SiC nanoribbons: an ab initio investigation.
    Costa CD; Morbec JM
    J Phys Condens Matter; 2011 May; 23(20):205504. PubMed ID: 21540516
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular charge transfer by adsorbing TCNQ/TTF molecules via π-π interaction: a simple and effective strategy to modulate the electronic and magnetic behaviors of zigzag SiC nanoribbons.
    Liu D; Yu G; Sun Y; Huang X; Guan J; Zhang H; Li H; Chen W
    Phys Chem Chem Phys; 2015 Jan; 17(2):941-50. PubMed ID: 25407886
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adsorbing the 3d-transition metal atoms to effectively modulate the electronic and magnetic behaviors of zigzag SiC nanoribbons.
    Li H; Chen W; Shen X; Liu J; Huang X; Yu G
    Phys Chem Chem Phys; 2017 Feb; 19(5):3694-3705. PubMed ID: 28094365
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electronic and magnetic properties of boron nitride nanoribbons with square-octagon (4 | 8) line defects.
    Han Y; Li R; Zhou J; Dong J; Kawazoe Y
    Nanotechnology; 2014 Mar; 25(11):115702. PubMed ID: 24556819
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adsorbing a PVDF polymer via noncovalent interactions to effectively tune the electronic and magnetic properties of zigzag SiC nanoribbons.
    Li H; Chen W; Sun Y; Huang X; Yu G
    Phys Chem Chem Phys; 2015 Oct; 17(37):24038-47. PubMed ID: 26312553
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accurate prediction of the electronic properties of low-dimensional graphene derivatives using a screened hybrid density functional.
    Barone V; Hod O; Peralta JE; Scuseria GE
    Acc Chem Res; 2011 Apr; 44(4):269-79. PubMed ID: 21388164
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structures, mobilities, electronic and magnetic properties of point defects in silicene.
    Gao J; Zhang J; Liu H; Zhang Q; Zhao J
    Nanoscale; 2013 Oct; 5(20):9785-92. PubMed ID: 23963524
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Band-gap engineering via tailored line defects in boron-nitride nanoribbons, sheets, and nanotubes.
    Li X; Wu X; Zeng XC; Yang J
    ACS Nano; 2012 May; 6(5):4104-12. PubMed ID: 22482995
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploring Spin Distribution and Electronic Properties in FeN
    Oguz IC; Jaouen F; Mineva T
    Molecules; 2024 Jan; 29(2):. PubMed ID: 38257393
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Edge reconstruction effect in pristine and H-passivated zigzag silicon carbide nanoribbons.
    Lou P
    Phys Chem Chem Phys; 2011 Oct; 13(38):17194-204. PubMed ID: 21879055
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electronic structures of SiC nanoribbons.
    Sun L; Li Y; Li Z; Li Q; Zhou Z; Chen Z; Yang J; Hou JG
    J Chem Phys; 2008 Nov; 129(17):174114. PubMed ID: 19045340
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electronic and magnetic properties of pristine and chemically functionalized germanene nanoribbons.
    Pang Q; Zhang Y; Zhang JM; Ji V; Xu KW
    Nanoscale; 2011 Oct; 3(10):4330-8. PubMed ID: 21897985
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MoS2 nanoribbons: high stability and unusual electronic and magnetic properties.
    Li Y; Zhou Z; Zhang S; Chen Z
    J Am Chem Soc; 2008 Dec; 130(49):16739-44. PubMed ID: 19554733
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Realizing diverse electronic and magnetic properties in hybrid zigzag BNC nanoribbons via hydrogenation.
    Sun Y; Yu G; Liu J; Shen X; Huang X; Chen W
    Phys Chem Chem Phys; 2016 Jan; 18(2):1326-40. PubMed ID: 26658552
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photogalvanic effect induced fully spin polarized current and pure spin current in zigzag SiC nanoribbons.
    Chen J; Zhang L; Zhang L; Zheng X; Xiao L; Jia S; Wang J
    Phys Chem Chem Phys; 2018 Nov; 20(41):26744-26751. PubMed ID: 30324951
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural and electronic properties of zigzag InP nanoribbons with Stone-Wales type defects.
    Longo RC; Carrete J; Varela LM; Gallego LJ
    J Phys Condens Matter; 2016 Feb; 28(6):065503. PubMed ID: 26792795
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Magnetic and electronic properties of α-graphyne nanoribbons.
    Yue Q; Chang S; Kang J; Tan J; Qin S; Li J
    J Chem Phys; 2012 Jun; 136(24):244702. PubMed ID: 22755594
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.