These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 23794421)
1. Importance of size and distribution of Ni nanoparticles for the hydrodeoxygenation of microalgae oil. Song W; Zhao C; Lercher JA Chemistry; 2013 Jul; 19(30):9833-42. PubMed ID: 23794421 [TBL] [Abstract][Full Text] [Related]
2. Transition Metal Phosphide Nanoparticles Supported on SBA-15 as Highly Selective Hydrodeoxygenation Catalysts for the Production of Advanced Biofuels. Yang Y; Ochoa-Hernández C; de la Peña O'Shea VA; Pizarro P; Coronado JM; Serrano DP J Nanosci Nanotechnol; 2015 Sep; 15(9):6642-50. PubMed ID: 26716223 [TBL] [Abstract][Full Text] [Related]
3. Zeolite Y supported nickel phosphide catalysts for the hydrodenitrogenation of quinoline as a proxy for crude bio-oils from hydrothermal liquefaction of microalgae. Wagner JL; Jones E; Sartbaeva A; Davis SA; Torrente-Murciano L; Chuck CJ; Ting VP Dalton Trans; 2018 Jan; 47(4):1189-1201. PubMed ID: 29292457 [TBL] [Abstract][Full Text] [Related]
4. One-pot synthesized hierarchical zeolite supported metal nanoparticles for highly efficient biomass conversion. Wang D; Ma B; Wang B; Zhao C; Wu P Chem Commun (Camb); 2015 Oct; 51(82):15102-5. PubMed ID: 26361087 [TBL] [Abstract][Full Text] [Related]
5. Catalytic Fast Pyrolysis of Cellulose Using Nano Zeolite and Zeolite/Matrix Catalysts in a GC/Micro-Pyrolyzer. Lee KH J Nanosci Nanotechnol; 2016 May; 16(5):4631-7. PubMed ID: 27483802 [TBL] [Abstract][Full Text] [Related]
6. In situ generation of Ni nanoparticles from metal-organic framework precursors and their use for biomass hydrodeoxygenation. Čelič TB; Grilc M; Likozar B; Tušar NN ChemSusChem; 2015 May; 8(10):1703-10. PubMed ID: 25755008 [TBL] [Abstract][Full Text] [Related]
7. Ni Nanoparticles Supported on Cage-Type Mesoporous Silica for CO2 Hydrogenation with High CH4 Selectivity. Budi CS; Wu HC; Chen CS; Saikia D; Kao HM ChemSusChem; 2016 Sep; 9(17):2326-31. PubMed ID: 27531065 [TBL] [Abstract][Full Text] [Related]
8. Bio-oil upgrading with catalytic pyrolysis of biomass using Copper/zeolite-Nickel/zeolite and Copper-Nickel/zeolite catalysts. Kumar R; Strezov V; Lovell E; Kan T; Weldekidan H; He J; Dastjerdi B; Scott J Bioresour Technol; 2019 May; 279():404-409. PubMed ID: 30712994 [TBL] [Abstract][Full Text] [Related]
9. Glucose- and cellulose-derived Ni/C-SO3H catalysts for liquid phase phenol hydrodeoxygenation. Kasakov S; Zhao C; Baráth E; Chase ZA; Fulton JL; Camaioni DM; Vjunov A; Shi H; Lercher JA Chemistry; 2015 Jan; 21(4):1567-77. PubMed ID: 25431188 [TBL] [Abstract][Full Text] [Related]
10. Production of aviation fuel via catalytic hydrothermal decarboxylation of fatty acids in microalgae oil. Yang C; Nie R; Fu J; Hou Z; Lu X Bioresour Technol; 2013 Oct; 146():569-573. PubMed ID: 23973977 [TBL] [Abstract][Full Text] [Related]
11. In situ hydro-deoxygenation onto nickel-doped HZSM-5 zeolite catalyst for upgrading pyrolytic oil. Wantala K; Klangwichian W; Suwannaruang T; Praphatsaraphiwat S; Taksungnern R; Chirawatkul P; Kaewluan S; Shivaraju HP Environ Sci Pollut Res Int; 2023 Nov; 30(55):117829-117845. PubMed ID: 37875756 [TBL] [Abstract][Full Text] [Related]
12. Impact of the oxygen defects and the hydrogen concentration on the surface of tetragonal and monoclinic ZrO2 on the reduction rates of stearic acid on Ni/ZrO2. Foraita S; Fulton JL; Chase ZA; Vjunov A; Xu P; Baráth E; Camaioni DM; Zhao C; Lercher JA Chemistry; 2015 Feb; 21(6):2423-34. PubMed ID: 25504844 [TBL] [Abstract][Full Text] [Related]
13. ZIF-8 immobilized nickel nanoparticles: highly effective catalysts for hydrogen generation from hydrolysis of ammonia borane. Li PZ; Aranishi K; Xu Q Chem Commun (Camb); 2012 Mar; 48(26):3173-5. PubMed ID: 22343827 [TBL] [Abstract][Full Text] [Related]
14. Controllable hydrothermal synthesis of Ni/H-BEA with a hierarchical core-shell structure and highly enhanced biomass hydrodeoxygenation performance. Ma B; Cui H; Wang D; Wu P; Zhao C Nanoscale; 2017 May; 9(18):5986-5995. PubMed ID: 28440836 [TBL] [Abstract][Full Text] [Related]
15. Catalytic pyrolysis of high-density polyethylene over nickel-waste chicken eggshell/HZSM-5. Mohamad Dzol MAA; Balasundram V; Shameli K; Ibrahim N; Manan ZA; Isha R J Environ Manage; 2022 Dec; 324():116392. PubMed ID: 36208512 [TBL] [Abstract][Full Text] [Related]
16. Construction of Bifunctional Co/H-ZSM-5 Catalysts for the Hydrodeoxygenation of Stearic Acid to Diesel-Range Alkanes. Wu G; Zhang N; Dai W; Guan N; Li L ChemSusChem; 2018 Jul; 11(13):2179-2188. PubMed ID: 29701318 [TBL] [Abstract][Full Text] [Related]
17. Catalytic hydrodeoxygenation of rubber seed oil over sonochemically synthesized Ni-Mo/γ-Al Ameen M; Azizan MT; Ramli A; Yusup S; Alnarabiji MS Ultrason Sonochem; 2019 Mar; 51():90-102. PubMed ID: 30514489 [TBL] [Abstract][Full Text] [Related]
18. Hydroprocessing of sunflower oil-gas oil blends over sulfided Ni-Mo-Al-zeolite beta composites. Sankaranarayanan TM; Banu M; Pandurangan A; Sivasanker S Bioresour Technol; 2011 Nov; 102(22):10717-23. PubMed ID: 21945166 [TBL] [Abstract][Full Text] [Related]
19. Bio-aviation fuel production from hydroprocessing castor oil promoted by the nickel-based bifunctional catalysts. Liu S; Zhu Q; Guan Q; He L; Li W Bioresour Technol; 2015 May; 183():93-100. PubMed ID: 25725407 [TBL] [Abstract][Full Text] [Related]
20. Hydrotreatment of bio-oil over Ni-based catalyst. Zhang X; Wang T; Ma L; Zhang Q; Jiang T Bioresour Technol; 2013 Jan; 127():306-11. PubMed ID: 23138057 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]