BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 23794523)

  • 1. Metabolic engineering and transhydrogenase effects on NADPH availability in Escherichia coli.
    Jan J; Martinez I; Wang Y; Bennett GN; San KY
    Biotechnol Prog; 2013; 29(5):1124-30. PubMed ID: 23794523
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of NADPH supply during xylitol production by engineered Escherichia coli.
    Chin JW; Khankal R; Monroe CA; Maranas CD; Cirino PC
    Biotechnol Bioeng; 2009 Jan; 102(1):209-20. PubMed ID: 18698648
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distinct transcriptional regulation of the two Escherichia coli transhydrogenases PntAB and UdhA.
    Haverkorn van Rijsewijk BRB; Kochanowski K; Heinemann M; Sauer U
    Microbiology (Reading); 2016 Sep; 162(9):1672-1679. PubMed ID: 27488847
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved cell growth and biosynthesis of glycolic acid by overexpression of membrane-bound pyridine nucleotide transhydrogenase.
    Cabulong RB; Valdehuesa KNG; Bañares AB; Ramos KRM; Nisola GM; Lee WK; Chung WJ
    J Ind Microbiol Biotechnol; 2019 Feb; 46(2):159-169. PubMed ID: 30554290
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The soluble and membrane-bound transhydrogenases UdhA and PntAB have divergent functions in NADPH metabolism of Escherichia coli.
    Sauer U; Canonaco F; Heri S; Perrenoud A; Fischer E
    J Biol Chem; 2004 Feb; 279(8):6613-9. PubMed ID: 14660605
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expanding metabolic pathway for de novo biosynthesis of the chiral pharmaceutical intermediate L-pipecolic acid in Escherichia coli.
    Ying H; Tao S; Wang J; Ma W; Chen K; Wang X; Ouyang P
    Microb Cell Fact; 2017 Mar; 16(1):52. PubMed ID: 28347340
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient one-step production of (S)-1-phenyl-1,2-ethanediol from (R)-enantiomer plus NAD(+)-NADPH in-situ regeneration using engineered Escherichia coli.
    Zhang R; Xu Y; Xiao R; Zhang B; Wang L
    Microb Cell Fact; 2012 Dec; 11():167. PubMed ID: 23272948
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of NADPH availability on free fatty acid production in Escherichia coli.
    Li W; Wu H; Li M; San KY
    Biotechnol Bioeng; 2018 Feb; 115(2):444-452. PubMed ID: 28976546
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced acetic acid and succinic acid production under microaerobic conditions by Corynebacterium glutamicum harboring Escherichia coli transhydrogenase gene pntAB.
    Yamauchi Y; Hirasawa T; Nishii M; Furusawa C; Shimizu H
    J Gen Appl Microbiol; 2014; 60(3):112-8. PubMed ID: 25008167
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic Engineering of Escherichia coli for Efficient Production of 2-Pyrone-4,6-dicarboxylic Acid from Glucose.
    Luo ZW; Kim WJ; Lee SY
    ACS Synth Biol; 2018 Sep; 7(9):2296-2307. PubMed ID: 30096230
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Production of shikimic acid from Escherichia coli through chemically inducible chromosomal evolution and cofactor metabolic engineering.
    Cui YY; Ling C; Zhang YY; Huang J; Liu JZ
    Microb Cell Fact; 2014 Feb; 13():21. PubMed ID: 24512078
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Understanding the impact of the cofactor swapping of isocitrate dehydrogenase over the growth phenotype of Escherichia coli on acetate by using constraint-based modeling.
    Armingol E; Tobar E; Cabrera R
    PLoS One; 2018; 13(4):e0196182. PubMed ID: 29677222
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic flux response to phosphoglucose isomerase knock-out in Escherichia coli and impact of overexpression of the soluble transhydrogenase UdhA.
    Canonaco F; Hess TA; Heri S; Wang T; Szyperski T; Sauer U
    FEMS Microbiol Lett; 2001 Nov; 204(2):247-52. PubMed ID: 11731130
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic engineering of Corynebacterium glutamicum for improved L-arginine synthesis by enhancing NADPH supply.
    Zhan M; Kan B; Dong J; Xu G; Han R; Ni Y
    J Ind Microbiol Biotechnol; 2019 Jan; 46(1):45-54. PubMed ID: 30446890
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering of NADPH regenerators in Escherichia coli for enhanced biotransformation.
    Lee WH; Kim MD; Jin YS; Seo JH
    Appl Microbiol Biotechnol; 2013 Apr; 97(7):2761-72. PubMed ID: 23420268
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improving poly-3-hydroxybutyrate production in Escherichia coli by combining the increase in the NADPH pool and acetyl-CoA availability.
    Centeno-Leija S; Huerta-Beristain G; Giles-Gómez M; Bolivar F; Gosset G; Martinez A
    Antonie Van Leeuwenhoek; 2014 Apr; 105(4):687-96. PubMed ID: 24500003
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dissecting the genetic and metabolic mechanisms of adaptation to the knockout of a major metabolic enzyme in
    Long CP; Gonzalez JE; Feist AM; Palsson BO; Antoniewicz MR
    Proc Natl Acad Sci U S A; 2018 Jan; 115(1):222-227. PubMed ID: 29255023
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of overexpression of a soluble pyridine nucleotide transhydrogenase (UdhA) on the production of poly(3-hydroxybutyrate) in Escherichia coli.
    Sanchez AM; Andrews J; Hussein I; Bennett GN; San KY
    Biotechnol Prog; 2006; 22(2):420-5. PubMed ID: 16599556
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High NADPH/NADP+ ratio improves thymidine production by a metabolically engineered Escherichia coli strain.
    Lee HC; Kim JS; Jang W; Kim SY
    J Biotechnol; 2010 Aug; 149(1-2):24-32. PubMed ID: 20600382
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression of a cytoplasmic transhydrogenase in Saccharomyces cerevisiae results in formation of 2-oxoglutarate due to depletion of the NADPH pool.
    Nissen TL; Anderlund M; Nielsen J; Villadsen J; Kielland-Brandt MC
    Yeast; 2001 Jan; 18(1):19-32. PubMed ID: 11124698
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.