These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
101 related articles for article (PubMed ID: 23794535)
1. MRI acquisition and analysis protocol for in vivo intraorbital optic nerve segmentation at 3T. Yiannakas MC; Toosy AT; Raftopoulos RE; Kapoor R; Miller DH; Wheeler-Kingshott CA Invest Ophthalmol Vis Sci; 2013 Jun; 54(6):4235-40. PubMed ID: 23794535 [TBL] [Abstract][Full Text] [Related]
2. A method for measuring the cross sectional area of the anterior portion of the optic nerve in vivo using a fast 3D MRI sequence. Yiannakas MC; Wheeler-Kingshott CA; Berry AM; Chappell K; Henderson A; Kolappan M; Miller DH; Tozer DJ J Magn Reson Imaging; 2010 Jun; 31(6):1486-91. PubMed ID: 20512904 [TBL] [Abstract][Full Text] [Related]
3. Feasibility of grey matter and white matter segmentation of the upper cervical cord in vivo: a pilot study with application to magnetisation transfer measurements. Yiannakas MC; Kearney H; Samson RS; Chard DT; Ciccarelli O; Miller DH; Wheeler-Kingshott CA Neuroimage; 2012 Nov; 63(3):1054-9. PubMed ID: 22850571 [TBL] [Abstract][Full Text] [Related]
4. Grey and White Matter Magnetisation Transfer Ratio Measurements in the Lumbosacral Enlargement: A Pilot In Vivo Study at 3T. Ugorji CO; Samson RS; Liechti MD; Panicker JN; Miller DH; Wheeler-Kingshott CA; Yiannakas MC PLoS One; 2015; 10(7):e0134495. PubMed ID: 26230729 [TBL] [Abstract][Full Text] [Related]
5. Whole-body magnetic resonance imaging of healthy volunteers: pilot study results from the population-based SHIP study. Hegenscheid K; Kühn JP; Völzke H; Biffar R; Hosten N; Puls R Rofo; 2009 Aug; 181(8):748-59. PubMed ID: 19598074 [TBL] [Abstract][Full Text] [Related]
6. Brain magnetic resonance imaging at 3 Tesla using BLADE compared with standard rectilinear data sampling. Wintersperger BJ; Runge VM; Biswas J; Nelson CB; Stemmer A; Simonetta AB; Reiser MF; Naul LG; Schoenberg SO Invest Radiol; 2006 Jul; 41(7):586-92. PubMed ID: 16772852 [TBL] [Abstract][Full Text] [Related]
7. High-resolution whole-body magnetic resonance imaging applications at 1.5 and 3 Tesla: a comparative study. Schmidt GP; Wintersperger B; Graser A; Baur-Melnyk A; Reiser MF; Schoenberg SO Invest Radiol; 2007 Jun; 42(6):449-59. PubMed ID: 17507818 [TBL] [Abstract][Full Text] [Related]
8. In vivo retinotopic mapping of superior colliculus using manganese-enhanced magnetic resonance imaging. Chan KC; Li J; Kau P; Zhou IY; Cheung MM; Lau C; Yang J; So KF; Wu EX Neuroimage; 2011 Jan; 54(1):389-95. PubMed ID: 20633657 [TBL] [Abstract][Full Text] [Related]
9. Validation of a semiautomated spinal cord segmentation method. El Mendili MM; Chen R; Tiret B; Pélégrini-Issac M; Cohen-Adad J; Lehéricy S; Pradat PF; Benali H J Magn Reson Imaging; 2015 Feb; 41(2):454-9. PubMed ID: 24436309 [TBL] [Abstract][Full Text] [Related]
10. Hyperpolarized 3He magnetic resonance imaging of ventilation defects in healthy elderly volunteers: initial findings at 3.0 Tesla. Parraga G; Mathew L; Etemad-Rezai R; McCormack DG; Santyr GE Acad Radiol; 2008 Jun; 15(6):776-85. PubMed ID: 18486013 [TBL] [Abstract][Full Text] [Related]
11. SEMAC-VAT and MSVAT-SPACE sequence strategies for metal artifact reduction in 1.5T magnetic resonance imaging. Ai T; Padua A; Goerner F; Nittka M; Gugala Z; Jadhav S; Trelles M; Johnson RF; Lindsey RW; Li X; Runge VM Invest Radiol; 2012 May; 47(5):267-76. PubMed ID: 22266987 [TBL] [Abstract][Full Text] [Related]
12. In vivo biochemical 7.0 Tesla magnetic resonance: preliminary results of dGEMRIC, zonal T2, and T2* mapping of articular cartilage. Welsch GH; Mamisch TC; Hughes T; Zilkens C; Quirbach S; Scheffler K; Kraff O; Schweitzer ME; Szomolanyi P; Trattnig S Invest Radiol; 2008 Sep; 43(9):619-26. PubMed ID: 18708855 [TBL] [Abstract][Full Text] [Related]
14. The use of the lumbosacral enlargement as an intrinsic imaging biomarker: feasibility of grey matter and white matter cross-sectional area measurements using MRI at 3T. Yiannakas MC; Kakar P; Hoy LR; Miller DH; Wheeler-Kingshott CA PLoS One; 2014; 9(8):e105544. PubMed ID: 25170763 [TBL] [Abstract][Full Text] [Related]
15. MRI of the female pelvis at 3T compared to 1.5T: evaluation on high-resolution T2-weighted and HASTE images. Kataoka M; Kido A; Koyama T; Isoda H; Umeoka S; Tamai K; Nakamoto Y; Maetani Y; Morisawa N; Saga T; Togashi K J Magn Reson Imaging; 2007 Mar; 25(3):527-34. PubMed ID: 17326081 [TBL] [Abstract][Full Text] [Related]
16. Magnetic resonance imaging in patients implanted with Ex-PRESS stainless steel glaucoma drainage microdevice. De Feo F; Roccatagliata L; Bonzano L; Castelletti L; Mancardi G; Traverso CE Am J Ophthalmol; 2009 May; 147(5):907-11, 911.e1. PubMed ID: 19232564 [TBL] [Abstract][Full Text] [Related]
18. Demonstration of systematic variation in human intraorbital optic nerve size by quantitative magnetic resonance imaging and histology. Karim S; Clark RA; Poukens V; Demer JL Invest Ophthalmol Vis Sci; 2004 Apr; 45(4):1047-51. PubMed ID: 15037567 [TBL] [Abstract][Full Text] [Related]
19. Hyperpolarized 3He magnetic resonance functional imaging semiautomated segmentation. Kirby M; Heydarian M; Svenningsen S; Wheatley A; McCormack DG; Etemad-Rezai R; Parraga G Acad Radiol; 2012 Feb; 19(2):141-52. PubMed ID: 22104288 [TBL] [Abstract][Full Text] [Related]
20. Voxel-based analysis of R2* maps in the healthy human brain. Péran P; Hagberg G; Luccichenti G; Cherubini A; Brainovich V; Celsis P; Caltagirone C; Sabatini U J Magn Reson Imaging; 2007 Dec; 26(6):1413-20. PubMed ID: 18059009 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]