BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 23794626)

  • 1. Molecular characterization of PauR and its role in control of putrescine and cadaverine catabolism through the γ-glutamylation pathway in Pseudomonas aeruginosa PAO1.
    Chou HT; Li JY; Peng YC; Lu CD
    J Bacteriol; 2013 Sep; 195(17):3906-13. PubMed ID: 23794626
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional characterization of seven γ-Glutamylpolyamine synthetase genes and the bauRABCD locus for polyamine and β-Alanine utilization in Pseudomonas aeruginosa PAO1.
    Yao X; He W; Lu CD
    J Bacteriol; 2011 Aug; 193(15):3923-30. PubMed ID: 21622750
    [TBL] [Abstract][Full Text] [Related]  

  • 3. L-lysine catabolism is controlled by L-arginine and ArgR in Pseudomonas aeruginosa PAO1.
    Chou HT; Hegazy M; Lu CD
    J Bacteriol; 2010 Nov; 192(22):5874-80. PubMed ID: 20833801
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptome analysis of agmatine and putrescine catabolism in Pseudomonas aeruginosa PAO1.
    Chou HT; Kwon DH; Hegazy M; Lu CD
    J Bacteriol; 2008 Mar; 190(6):1966-75. PubMed ID: 18192388
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional characterization of the agtABCD and agtSR operons for 4-aminobutyrate and 5-aminovalerate uptake and regulation in Pseudomonas aeruginosa PAO1.
    Chou HT; Li JY; Lu CD
    Curr Microbiol; 2014 Jan; 68(1):59-63. PubMed ID: 23982201
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional analysis and regulation of the divergent spuABCDEFGH-spuI operons for polyamine uptake and utilization in Pseudomonas aeruginosa PAO1.
    Lu CD; Itoh Y; Nakada Y; Jiang Y
    J Bacteriol; 2002 Jul; 184(14):3765-73. PubMed ID: 12081945
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Specific Gene Expression in
    Getino L; Chamizo-Ampudia A; Martín JL; Luengo JM; Barreiro C; Olivera ER
    Genes (Basel); 2023 Sep; 14(10):. PubMed ID: 37895246
    [No Abstract]   [Full Text] [Related]  

  • 8. Molecular characterization of LhpR in control of hydroxyproline catabolism and transport in Pseudomonas aeruginosa PAO1.
    Li G; Lu CD
    Microbiology (Reading); 2016 Jul; 162(7):1232-1242. PubMed ID: 27145750
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional characterization of the dguRABC locus for D-Glu and d-Gln utilization in Pseudomonas aeruginosa PAO1.
    He W; Li G; Yang CK; Lu CD
    Microbiology (Reading); 2014 Oct; 160(Pt 10):2331-2340. PubMed ID: 25082951
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Second Gamma-Glutamylpolyamine Synthetase, GlnA2, Is Involved in Polyamine Catabolism in
    Krysenko S; Okoniewski N; Nentwich M; Matthews A; Bäuerle M; Zinser A; Busche T; Kulik A; Gursch S; Kemeny A; Bera A; Wohlleben W
    Int J Mol Sci; 2022 Mar; 23(7):. PubMed ID: 35409114
    [No Abstract]   [Full Text] [Related]  

  • 11. Regulation and characterization of the dadRAX locus for D-amino acid catabolism in Pseudomonas aeruginosa PAO1.
    He W; Li C; Lu CD
    J Bacteriol; 2011 May; 193(9):2107-15. PubMed ID: 21378189
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional genomics enables identification of genes of the arginine transaminase pathway in Pseudomonas aeruginosa.
    Yang Z; Lu CD
    J Bacteriol; 2007 Jun; 189(11):3945-53. PubMed ID: 17416670
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular characterization and regulation of operons for asparagine and aspartate uptake and utilization in Pseudomonas aeruginosa.
    Li G; Lu CD
    Microbiology (Reading); 2018 Feb; 164(2):205-216. PubMed ID: 29293081
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Redundancy in putrescine catabolism in solvent tolerant Pseudomonas putida S12.
    Bandounas L; Ballerstedt H; de Winde JH; Ruijssenaars HJ
    J Biotechnol; 2011 Jun; 154(1):1-10. PubMed ID: 21540064
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pathway and enzyme redundancy in putrescine catabolism in Escherichia coli.
    Schneider BL; Reitzer L
    J Bacteriol; 2012 Aug; 194(15):4080-8. PubMed ID: 22636776
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Catabolism of L-lysine by Pseudomonas aeruginosa.
    Fothergill JC; Guest JR
    J Gen Microbiol; 1977 Mar; 99(1):139-55. PubMed ID: 405455
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pseudomonas aeruginosa thiol peroxidase protects against hydrogen peroxide toxicity and displays atypical patterns of gene regulation.
    Somprasong N; Jittawuttipoka T; Duang-Nkern J; Romsang A; Chaiyen P; Schweizer HP; Vattanaviboon P; Mongkolsuk S
    J Bacteriol; 2012 Aug; 194(15):3904-12. PubMed ID: 22609922
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Validation and preliminary application of a GC-MS method for the determination of putrescine and cadaverine in the human brain: a promising technique for PMI estimation.
    Pelletti G; Garagnani M; Barone R; Boscolo-Berto R; Rossi F; Morotti A; Roffi R; Fais P; Pelotti S
    Forensic Sci Int; 2019 Apr; 297():221-227. PubMed ID: 30831414
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The expression of the genes involved in leucine catabolism of Pseudomonas aeruginosa is controlled by the transcriptional regulator LiuR and by the CbrAB/Crc system.
    Díaz-Pérez AL; Núñez C; Meza Carmen V; Campos-García J
    Res Microbiol; 2018; 169(6):324-334. PubMed ID: 29787835
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The PaaX-type repressor MeqR2 of Arthrobacter sp. strain Rue61a, involved in the regulation of quinaldine catabolism, binds to its own promoter and to catabolic promoters and specifically responds to anthraniloyl coenzyme A.
    Niewerth H; Parschat K; Rauschenberg M; Ravoo BJ; Fetzner S
    J Bacteriol; 2013 Mar; 195(5):1068-80. PubMed ID: 23275246
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.